Vitesse d'équidistribution vers le courant de Green pour les endomorphismes de \mathbb{P}^k

Johan Taflin^a,

^a UPMC Univ Paris 06, UMR 7586, Institut de Mathématiques de Jussieu, F-75005 Paris, France

Résumé

Soient f un endomorphisme holomorphe non-inversible de \mathbb{P}^k et f^n son itérée d'ordre n. Pour une hypersurface H de \mathbb{P}^k , générique au sens de Zariski, nous donnons une vitesse de convergence explicite des préimages $f^{-n}(H)$ vers le (1,1)-courant de Green de f.

Abstract

Equidistribution speed towards the Green current for endomorphisms of \mathbb{P}^k . Let f be a non-invertible holomorphic endomorphism of \mathbb{P}^k . For a hypersurface H of \mathbb{P}^k , generic in the Zariski sense, we give an explicit speed of convergence of $f^{-n}(H)$ towards the dynamical Green (1,1)-current of f.

1. Introduction

Dans cette note, nous considérons un endomorphisme holomorphe f de degré algébrique $d \geq 2$ de l'espace projectif complexe \mathbb{P}^k . Un objet classique dans l'étude dynamique de ces systèmes est le (1,1) courant de Green T associé à f. Ce courant est positif fermé de masse 1 et totalement invariant i.e. $d^{-1}f^*T = T$. Il porte de nombreuses informations sur la dynamique de f. D'après les résultats de Fornæss-Sibony [6], Favre-Jonsson [5] et Dinh-Sibony [3], si H est une hypersurface générique, la suite $d^{-n}(f^n)^*[H]$ converge vers $\deg(H)T$ dans le sens des courants. De plus, T admet des potentiels locaux continus, ce qui permet de définir ses auto-intersections $T^p := T \wedge \cdots \wedge T$. Dinh et Sibony ont proposé la conjecture suivante.

Conjecture 1.1 Soient f et T comme ci-dessus. Si H est un ensemble analytique de codimension pure p, générique au sens de Zariski, alors la suite $d^{-pn}(f^n)^*[H]$ converge vers $\deg(H)T^p$ à vitesse exponentielle.

Email address: taflin@math.jussieu.fr (Johan Taflin).

Preprint submitted to the Académie des sciences

14 décembre 2011

Le but de cette note est d'expliquer une démonstration dans le cas p=1, qui repose sur un résultat plus général sur les courants. Nous renvoyons à [1] pour la théorie des courants et des fonctions plurisousharmoniques (psh). Si S est un courant positif fermé de bidegré (1,1) et de masse 1, il est cohomologue à T et il existe une unique fonction quasi-psh u telle que $S=T+dd^cu$ et $\max_{\mathbb{P}^k}u=0$. On appelle u le potentiel dynamique de S.

Le théorème suivant, obtenu dans [7], implique la Conjecture 1.1 pour p=1. Il suffit de prendre $S=\deg(H)^{-1}[H]$, pour une hypersurface H ne contenant pas d'élément de \mathscr{A}_{λ} . On se réfère à [7] pour une historique du problème et une bibliographie plus exhaustive.

Théorème 1.2 Soient f, T comme ci-dessus et soit $1 < \lambda < d$. Il existe une famille finie \mathscr{A}_{λ} d'ensembles analytiques irréductibles périodiques telle que si S est un (1,1)-courant positif fermé de masse 1 dont le potentiel dynamique u vérifie $||u||_{L^1(X)} \leq C$ pour tout $X \in \mathscr{A}_{\lambda}$, alors la suite $S_n := d^{-n}(f^n)^*(S)$ converge vers T à vitesse exponentielle. Plus précisément, pour tout $0 < \beta \leq 2$ et $\phi \in \mathscr{C}^{\beta}(\mathbb{P}^k)$ nous avons

$$|\langle S_n - T, \phi \rangle| \le A \|\phi\|_{\mathscr{C}^{\beta}} (\lambda/d)^{n\beta/2},\tag{1}$$

où A>0 est une constante qui dépend de C et β mais qui est indépendante de S, ϕ et n.

Dans la démonstration, nous sommes amenés à faire une récurrence sur une famille d'ensembles analytiques invariants de \mathbb{P}^k , dont les éléments de \mathscr{A}_{λ} sont les éléments minimaux. C'est pourquoi les outils des Sections 3 et 4 sont développés pour des ensembles analytiques de \mathbb{P}^k . La présence de singularités entraı̂ne des difficultés techniques importantes que l'on surmonte en utilisant plusieurs inégalités de type Lojasiewicz (voir [7] pour plus de détails).

Dans cette note les symboles \lesssim et \gtrsim indiquent des inégalités à une constante multiplicative près.

2. Réduction du problème

La preuve du Théorème 1.2 suit en partie la stratégie introduite par Fornæss et Sibony dans [6] qui se base sur des estimations volumiques et sur la théorie du pluripotentiel. Puisque T est totalement invariant, le potentiel dynamique de S_n est $u_n := d^{-n}u \circ f^n$. Grâce à la théorie de l'interpolation entre espaces de Banach, il suffit de montrer le Théorème 1.2 pour $\beta = 2$. Dans ce cas, on a

$$|\langle S_n - T, \phi \rangle| = |\langle dd^c u_n, \phi \rangle| = |\langle u_n, dd^c \phi \rangle| \lesssim ||u_n||_{L^1(\mathbb{R}^k)} ||\phi||_{\mathscr{C}^2},$$

ce qui implique que (1) est équivalent à

$$||u_n||_{L^1(\mathbb{P}^k)} \lesssim (\lambda/d)^n. \tag{2}$$

Pour obtenir cette inégalité, nous montrons que les sous-niveaux $K_n = \{x \in \mathbb{P}^k \mid u_n(x) \leq -(\lambda/d)^n\}$ ont un volume qui décroit à une vitesse exponentielle. La première observation dans ce sens est que $f^n(K_n) = \{u \leq -\lambda^n\}$. Or, il est classique qu'il existe a > 0 tel que $\int_{\mathbb{P}^k} \exp(-au)\omega^k < \infty$, d'où

$$|f^n(K_n)| \lesssim \exp(-a\lambda^n). \tag{3}$$

Nous allons maintenant expliquer comment, sous les hypothèses du Théorème 1.2, obtenir une majoration du volume de K_n en fonction de celui de $f^n(K_n)$, ce qui impliquera le Théorème 1.2.

3. Ensembles exceptionnels et estimation du volume

Soit $X \subset \mathbb{P}^k$ un ensemble analytique invariant par f i.e. f(X) = X. On note g la restriction de f à X. La multiplicité locale de g en un point $x \in X$ est le nombre maximal de points dans $g^{-1}(z)$ proche de x pour $z \in X$. La contraction du volume par g au voisinage d'un point est très fortement reliée à la multiplicité locale de g en ce point.

Le théorème suivant, dû à Dinh [2], permet de contrôler la multiplicité des g^n en dehors d'un ensemble analytique propre invariant.

Théorème 3.1 Il existe une fonction κ_- sur X semi-continue supérieurement pour la topologie de Zariski telle que pour tout $\lambda > 1$ l'ensemble $E_{\lambda}(X) := \{\kappa_- \geq \lambda\}$ est un ensemble analytique propre de X qui est invariant par g. De plus, quitte à remplacer g par une itérée g^{n_0} et λ par λ^{n_0} , la multiplicité locale de g est inférieure à λ en dehors de $E := g^{-1}(E_{\lambda}(X))$.

Nous dirons que $E_{\lambda}(X)$ est un ensemble exceptionnel de X car il est invariant et qu'il contient l'image de tous les points où les itérées g^n ont une grande multiplicité. Nous allons voir en Section 4 que pour obtenir l'inégalité (2) sur \mathbb{P}^k nous avons besoin d'une inégalité similaire sur $E_{\lambda}(\mathbb{P}^k)$. Et plus généralement, pour obtenir (2) sur X nous avons besoin d'une inégalité similaire sur $E_{\lambda}(X)$. De fil en aiguille, cela nous pousse à définir une famille \mathcal{B}_{λ} d'ensembles exceptionnels sur lesquels nous ferons une récurrence.

Fixons $1 < \lambda < d$. Nous construisons la famille \mathscr{B}_{λ} comme suit. Premièrement, l'espace projectif \mathbb{P}^k est un élément de \mathscr{B}_{λ} . Puis, si $X \in \mathscr{B}_{\lambda}$ alors toutes les composantes irréductibles de $E_{\lambda}(X)$ appartiennent aussi à \mathscr{B}_{λ} . Cette famille est finie et puisque les fonctions κ_{-} sont semi-continues supérieurement, il existe $\delta < \lambda$ tel que $\mathscr{B}_{\delta} = \mathscr{B}_{\lambda}$. De plus, nous définissons la famille \mathscr{A}_{λ} qui intervient dans le Théorème 1.2 comme la famille des éléments de \mathscr{B}_{λ} qui sont minimaux pour l'inclusion. Les éléments de \mathscr{A}_{λ} nous permettent d'initier la récurrence car si $X \in \mathscr{A}_{\lambda}$ alors $E_{\lambda}(X) = \varnothing$.

Fixons $X \in \mathcal{B}_{\lambda}$ et rappelons que $E = g^{-1}(E_{\lambda}(X))$. Le contrôle de la multiplicité en dehors de E nous permet d'établir des estimations du volume pour g. C'est l'objet du résultat suivant qui s'obtient en généralisant aux ensembles analytiques des inégalités à la Lojasiewicz dues à Dinh et Sibony [4].

Théorème 3.2 Soit $1 < \delta < \lambda$ comme ci-dessus. Il existe des constantes $b \ge 1$ et $N \ge 1$ telles que si 0 < t < 1/2, r < t/2 et B est une boule de rayon r qui n'intersecte pas le t-voisinage E_t de E alors g(B) contient une boule de rayon r' avec $r' \gtrsim t^N r^{b\delta}$. De plus, b ne dépend que de X.

Le dernier point permet, quitte encore une fois à remplacer g par une itérée, de supposer que b=1. L'avantage de ce théorème est que quitte à augmenter E (en diminuant λ), ces estimations deviennent aussi précises que possible.

4. Estimations exponentielles

Dans cette section, nous considérons un courant S dont le potentiel dynamique u vérifie les hypothèses du Théorème 1.2. Comme en Section 3, nous fixons $X \in \mathcal{B}_{\lambda}$ et $E \subset X$. Par abus de notation nous continuons à noter K_n l'ensemble $\{x \in X \mid u_n(x) \leq -(\lambda/d)^n\}$. La dernière étape pour avoir (2) sur X consiste à montrer que les ensembles $g^i(K_n) \subset X$ ne sont pas concentrés autour de E, afin de leur appliquer le Théorème 3.2. Pour cela, nous allons utiliser différentes estimations exponentielles.

Un résultat classique de Hörmander donne une borne uniforme à $\exp(-v)$ dans $L^1(\mathbb{B}_{1/2})$ pour toutes les fonctions v, psh sur la boule unité \mathbb{B} de \mathbb{C}^k , négatives et telles que $v(0) \geq -1$. Des résultats analogues

existent pour des familles compactes de fonctions quasi-psh. Nous dirons qu'une fonction u sur \mathbb{P}^k est psh modulo T si $dd^cu + T$ est positif. Un point clef dans notre approche est que, quitte à réduire le domaine d'intégration, la continuité Hölder des potentiels de T permet d'établir des estimations exponentielles uniformes pour des familles non-compactes de fonctions psh modulo T.

Dans le résultat suivant, nous voyons T comme un courant sur la boule unité \mathbb{B} de \mathbb{C}^k et notons (K, α) les constantes de Hölder de son potentiel sur \mathbb{B} .

Lemme 4.1 Soit v une fonction psh modulo T sur \mathbb{B}_t telle que $v \leq 0$ et $v(0) > -\infty$. Soient $0 < s < -v(0)^{-1}$ et t > 0 tels que $Kt^{\alpha} \leq s^{-1}$. Il existe une constante c > 0 indépendante de v, s et t telle que $\int_{\mathbb{B}_{t/2}} \exp(-sv/2)\nu \leq ct^{2k}$.

La première conséquence est le résultat suivant qui explique la récurrence sur les éléments de \mathscr{B}_{λ} .

Lemme 4.2 Soient $\lambda_1, \lambda_2 > 1$ tels que $\delta < \lambda_1 < \lambda_2 < \lambda$. Supposons que pour tout élément Y de \mathcal{B}_{λ} , strictement inclus dans X nous avons $\|u_n\|_{L^1(Y)} \lesssim (\lambda_1/d)^n$. Alors, il existe des constantes $c, \eta \geq 1$ et $n_0 \geq 1$ telles que si $n \geq n_0$ alors $\int_{E_{t_n}} \exp(-(d/\lambda_2)^n u_n) \omega^l \leq c$, où $t_n = (\lambda_2/d)^{n\eta}$.

Supposons maintenant que l'hypothèse de ce lemme est vérifiée sur X. C'est automatique pour $X \in \mathcal{A}_{\lambda}$ par minimalité. Et supposons aussi par l'absurde qu'il existe une infinité de $n \in \mathbb{N}$ telle que $|K_n| \gtrsim (\lambda/d)^n$. Une deuxième conséquence du Lemme 4.1 est que K_n contient une boule B de rayon $(\lambda/d)^{an}$ pour une constante a>0 car sinon, il existerait un recouvrement de X par des boules où la valeur au centre de u_n est contrôlée et le Lemme 4.1 contredirait la minoration de $|K_n|$. D'un autre côté le Lemme 4.2 assure que B n'intersecte pas $E_{t_n/2}$, ce qui implique par le Théorème 3.2 que g(B) contient une boule de rayon $\gtrsim t_n^N(\lambda/d)^{a\delta n}$. Grâce au choix des constantes, le facteur en t_n est négligeable et en appliquant encore n-1 fois le même procédé, nous obtenons que $g^n(K_n)$ contient une boule de rayon proche de $(\lambda/d)^{a\delta^n n}$. Ceci est en contradiction avec l'équivalent pour g de (3) car $\delta < \lambda$, ce qui prouve bien que le volume de K_n doit au moins décroitre en $(\lambda/d)^n$.

Remarque 1 Soit $f: \mathbb{C}^k \to \mathbb{C}^k$ un automorphisme polynomial régulier au sens de Sibony. Nous pouvons montrer un résultat analogue sur la vitesse de convergence en dehors de l'ensemble d'indétermination de f, voir aussi [3].

Références

- [1] J.-P. Demailly, Complex analytic and differential geometry, www-fourier.ujf-grenoble.fr/~demailly/books.html, 2009.
- [2] T.-C. Dinh, Analytic multiplicative cocycles over holomorphic dynamical systems, *Complex Var. Elliptic Equ.*, 54(3-4):243-251, 2009.
- [3] T.-C. Dinh, N. Sibony, Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér. (4), 41(2):307–336, 2008.
- [4] T.-C. Dinh, N. Sibony, Equidistribution speed for endomorphisms of projective spaces, Math. Ann., 347(3):613-626, 2010.
- [5] C. Favre, M. Jonsson, Brolin's theorem for curves in two complex dimensions, Ann. Inst. Fourier (Grenoble), 53(5):1461–1501, 2003.
- [6] J.-E. Fornæss, N. Sibony, Complex dynamics in higher dimension II, dans Modern methods in complex analysis (Princeton, NJ, 1992), volume 137 de Ann. of Math. Stud., pages 135–182. Princeton Univ. Press, Princeton, NJ, 1995.
- [7] J. Taflin, Equidistribution speed towards the green current for endomorphisms of \mathbb{P}^k , preprint, arXiv:1011.0641