
SPARSITY OF POSTCRITICALLY FINITE MAPS OF Pk AND

BEYOND: A COMPLEX ANALYTIC APPROACH

THOMAS GAUTHIER, JOHAN TAFLIN, AND GABRIEL VIGNY

Abstract. An endomorphism f : Pk → Pk of degree d ≥ 2 is said to be postcritically
finite (or PCF) if its critical set Crit(f) is preperiodic, i.e. if there are integers m > n ≥ 0
such that fm(Crit(f)) ⊆ fn(Crit(f)). When k ≥ 2, it was conjectured in [IRS] that,
in the space Endkd of all endomorphisms of degree d of Pk, such endomorphisms are
not Zariski dense. We prove this conjecture. Further, in the space Poly2

d of all regular
polynomial endomorphisms of degree d ≥ 2 of the affine plane A2, we construct a dense
and Zariski open subset where we have a uniform bound on the number of preperiodic
points lying in the critical set.

The proofs are a combination of the theory of heights in arithmetic dynamics and
methods from real dynamics to produce open subsets with maximal bifurcation.
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Introduction

Let π : X → S be a family of complex projective varieties, where S is a smooth complex
projective variety, and let L be a nef and relatively ample line bundle on X . We let
f : X 99K X be a rational map such that (X , f,L) is a family of polarized endomorphisms
of degree d ≥ 2 over a Zariski open subset S0 of S, i.e. for all t ∈ S0(C), Xt := π−1{t}
is smooth, Lt := L|Xt is ample and f∗t Lt ' L⊗dt . If X 0 = π−1(S0), the family X 0 → S0

is the regular part of (X , f,L). The purpose of the article is to study maximal instability
phenomena in both complex and arithmetic dynamics, each viewpoint giving deep insights
into the other.

From the arithmetic viewpoint, we are mainly interested in the notion of canonical
height of a subvariety. Such height is a function meant to measure the arithmetic dy-
namical complexity of the orbit of the subvariety. Studying such objects in family, we are
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particularly interested in two cases: the universal family

f : Pk
M k
d
−→ Pk

M k
d

where M k
d is the moduli space of degree d and also the universal family

f : Pk
Pk
d
−→ Pk

Pk
d

where Pk
d is the moduli space of regular polynomial endomorphisms of the affine space

Ak, see § 2.1 for more details. In both cases, the family of subvarieties we consider is the
critical set. More precisely, we

• show that this height is in fact a moduli height on a Zariski open set U of M k
d .

• use that height to show that postcritically finite maps – PCF maps for short – (see
below) are not Zariski dense in M k

d nor in P2
d .

• prove a uniform bound on the number of preperiodic critical points for regular
polynomial endomorphisms whose conjugacy lies in a Zariski open set of P2

d .

The complex analytic viewpoint is essential in that process to

• show that the support of the bifurcation measure (see below) has non-empty inte-
rior in both M k

d and P2
d .

• prove that the correspondence between an endomorphism in M k
d (or P2

d) and the
collection of the multipliers of its periodic points is finite-to-one outside a Zariski
closed set.

We are strongly inspired by the recent results on families of abelian varieties where
similar type of results have been established, as well as by the recent uniform bounds
on the number of common preperiodic points for rational maps of P1, initiated by De-
Marco, Krieger and Ye [DKY1, DKY2] in the cases of flexible Lattès maps and quadratic
polynomials, and developed since then by Mavraki and Schmidt [MS] and DeMarco and
Mavraki [DM]. Concerning families of abelian varieties, they naturally fall in the setting
of family of polarized endomorphisms when taking the multiplication by [n] morphism.
In particular, we used ideas coming from the work of Gao-Habegger [GH] where the Geo-
metric Bogomolov conjecture is proved on curves (see also [CGHX, XY] for proofs in the
general case), the work of Dimitrov-Gao-Habegger [DGH] where a uniform bound on the
number of rational points of a curve C, defined over a number field, inside its Jacobian is
established (Uniform Mordell-Lang) and the works of Kühne [K], generalized by Yuan in
arbitrary characteristic [Yu], and Gao-Ge-Kühne [GGK] where the Uniform Mordell-Lang
Conjecture is generalized to arbitrary subvariety of an abelian variety.

A crucial point in our work is to link the notion of dynamical stability in complex
dynamics, which can be characterized by positive closed currents, with the notion of
dynamical height. In [GV], relying on the theory of DSH functions of Dinh and Sibony
[DS4], the first and third authors established such link for the (1, 1) bifurcation current of
a family of subvarieties, here we need to deal with the bifurcation measure, which measures
higher bifurcation phenomena. Let us explain those terms.

Let ω be a smooth positive form representing the first Chern class c1(L) on X . As
f∗L ' L⊗d on X 0, there is a smooth function g : X 0 → R such that d−1f∗ω = ω + ddcg
as forms on X 0. In particular, the following limit exists as a closed positive (1, 1)-current
with continuous potential on the quasi-projective variety X 0(C):

T̂f := lim
n→∞

1

dn
(fn)∗(ω),
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and can be written as T̂f = ω + ddcgf , where gf is continuous on X 0(C). The current T̂f
is the fibered Green current of f (note that for abelian varieties, T̂f is the Betti form). Let
Y → S be a family of subvarieties of X , i.e. Y is a subvariety of X and π|Y : Y → S of π
is flat over S0. If q is the relative dimension of Y, for 1 ≤ m ≤ dimS, the m-bifurcation
current of (X , f,L,Y) can be defined on S0(C) as

T
(m)
f,Y := (π[m])∗

(
T̂
m(dimYη+1)

f [m] ∧ [Y [m]]
)
,

where Yη is the generic fiber of Y, π[m] : X [m] → S is the m-fiber product of X , and

f [m] is the map induced by the fiberwise diagonal action of f . The bifurcation measure of
(X , f,L,Y) is then

µf,Y := T
(dimS)
f,Y .

We now focus on the case of a family of rational maps of Pk(C), parametrized by a
projective variety S. In this case, the regular part is X 0 = Pk × S0, where S0 is a
Zariski open subset of S. We then are interested in the bifurcation of the critical set
Crit(f) := {(z, t) ∈ Pk × S0 : det(Dzft) = 0}. So, the bifurcation measure is

µf,Crit := T
(dimS)
f,Crit(f) = (π[dimS])∗

(
T̂
k(dimS)

f [dimS] ∧ [Crit(f)[dimS]]
)
,

since Crit(f) is a hypersurface of Pk × S0.
When k = 1, the bifurcation current has been introduced by DeMarco [De] and the

bifurcation measure by Bassanelli-Berteloot [BB1]. For families of endomorphisms of
Pk, the bifurcation current has been introduced by Bassanelli-Berteloot [BB1]. In this
higher dimensional setting, Berteloot-Bianchi-Dupont showed it is the appropriate tool
for studying bifurcations in the important work [BBD] and the bifurcation measure was
first considered by Astorg and Bianchi [AB] in the very particular case of families of
polynomial skew-product.

It is an important question in complex dynamics to understand what kind of phenomena
these currents (or this measure) actually characterize. One way to explore this question
is to prove that the measure µf,Crit equidistributes specific type of dynamical behaviors
([BB2, DF, FG, GOV1]).

We now come to stating precise results. Define the critical height of a degree d endo-
morphism f : Pk → Pk defined over a number field as the canonical height of f evaluated
at the critical set of f :

hcrit(f) := ĥf (Crit(f))

and remark that this quantity depends only on the conjugacy class. In particular, this
defines a function

hcrit : M k
d (Q̄)→ R+.

Our first result here is the following

Theorem A (The critical height is a moduli height). The critical height hcrit of the moduli
space M k

d of degree d of endomorphisms of Pk is an ample height on a non-empty Zariski

open subset U of M k
d , i.e. for any ample line bundle M on a projective model of M k

d ,
there are constants C1, C2 > 0 and C3, C4 ∈ R such that

C1 · hM ([f ]) + C3 ≤ hcrit([f ]) ≤ C2hM ([f ]) + C4,

for all [f ] ∈M k
d (Q̄). Moreover, a subvariety Z is an irreducible component of M k

d \ U if
and only if the bifurcation measure µf,Crit,Z of the family induced by Z vanishes.
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For k = 1, this result is due to Ingram [I1] (see also [GOV2]). For k ≥ 1, Ingram
also proved explicit versions of the above theorem for specific families using convenient
parametrizations (e.g. [I2, I3]). In dimension 1, McMullen’s result [Mc] implies that the
algebraic subvariety where we do not have the inequality in Theorem A is exactly the
flexible Lattès family. Characterizing that subvariety in higher dimension is one of the
main questions in bifurcation theory in higher dimension.

In order to prove Theorem A, we follow Gao and Habbeger and Dimitrov in the abelian
case [GH, DGH] to prove an estimate in a family with positive (suitable) height which
compares the height of a parameter with the heights of generic point in the m-fiber product
of m-fiber product of Y. Our arguments are based on the early work [GV] of the first
and third authors (see Theorem 5.4). We then use notably Zhang inequalities [Zha1] to
conclude.

Let k ≥ 1. Let Endkd denote the set of endomorphisms f : Pk(C) → Pk(C) of degree
d (in homogeneous coordinates, f is the data of k + 1 homogeneous polynomials with no
common factor and the same degree d). Such f is postcritically finite (PCF for short) if
its postcritical set

PC(f) :=
⋃
n≥1

fn(Crit(f))

is an algebraic subvariety of Pk, where Crit(f) = {z ∈ Pk(C) : det(Dzf) = 0} is its
critical set. In dimension 1, the critical set is a finite set of cardinality 2d− 2 so, for all n,
fn(Crit(f)) is again a finite set of cardinality 2d − 2 (counting the multiplicity), so PCF
maps are not so hard to exhibit and it turns out that PCF maps are in fact Zariski dense
(e.g. [DF, BE2, GOV1, Ga3]). In higher dimension, the algebraic hypersurface Crit(f)
has positive dimension, hence it is not finite, and this fact is responsible for several new
phenomena arising in complex dynamics in several variables.

Nevertheless, such maps, which descend to M k
d , are of the utmost arithmetic importance

since they satisfy hcrit(f) = 0 (in dimension 1, it is known that the converse is true by
Northcott’s property, for k > 1, this is an open and important problem). This raises the
following theorem:

Theorem B (Sparsity of PCF maps). Fix two integers k, d ≥ 2. There exists a strict

subvariety V k
d ( Endkd such that any PCF endomorphism f is contained in V k

d .

Such result was conjectured by Ingram, Ramadas and Silverman in [IRS] where they

show that {f ∈ Endkd, f
n(Crit(f)) = fm(Crit(f))} is not Zariski dense for m ∈ {0, 1, 2}

and d ≥ 3. Our approach is inspired by Kühne’s Relative Equidistribution [K] on families
of abelian varieties defined over a number field K which we generalize to the setting of
families of polarized endomorphisms using the arithmetic equidistribution theorem of the
first author [Ga3] and Theorem A (see also [YZ]). Thus, if PCF maps were Zariski dense,
they would equidistribute the bifurcation measure. In order to get a contradiction, we
inject the following crucial theorem working at the complex place.

Theorem C (Robust strong bifurcations). Fix two integers k, d ≥ 2. There exists an
non-empty analytic open subset Ω ⊂M k

d (C) (resp. Ω ⊂P2
d) such that

• the open set Ω is contained in supp(µf,Crit),
• the open set Ω contains no PCF conjugacy class.

Observe that we do not prove the theorem for the moduli space Pk
d when k ≥ 3. This

is a technical issue that simply comes from the fact that our proof of the generic finiteness
of the multiplier maps only works on M k

d and P2
d . The same result probably holds on Pk

d
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in all dimensions but our main motivation for the polynomial case is Theorem D whose
counterpart (see Theorem 7.2) is weaker when k ≥ 3.

In dimension 1, Montel theorem easily implies that the bifurcation locus (i.e. the
support of the bifurcation current) has empty interior. In higher dimension, Bianchi and
the second author first gave an example (the Desboves family) where this is not the case
[BT]. In general, the fact that the support of the bifurcation current has non-empty
interior is due to the seminal work of Dujardin [Du], whose ideas were improved by the
second author in [T] to produce open sets of bifurcation in other situations. A different
approach, due to Biebler, was to construct an open set of bifurcations around Lattès maps
[Bie]. Turning to the bifurcation measure, the firsts to prove the non-emptiness of the
support of the bifurcation measure were Astorg and Bianchi [AB] in the very particular
case of the family of polynomial skew-products (with given base dynamics satisfying certain
additional assumptions) of C2.

An important ingredient in the proof of Theorem C is a mechanism called blender in
smooth dynamics. It was introduced by Bonatti-Dı́az in [BD3] to obtain new examples of
robustly transitive diffeomorphisms. Since then, it was used in a wide range of contexts in
real dynamics (see e.g. [RHRHTU], [BD5] or [Be]). A remarkable feature about blenders
is that they are much easier to construct than other mechanisms given robust intersections
(like the Newhouse phenomenon). A characteristic of particular importance in the rigid
setting of holomorphic dynamics where they were first introduced by Dujardin in [Du].

Roughly speaking, in our context a blender for a map f is a repelling hyperbolic set
(typically a Cantor set) that intersects an open family of (local) hypersurfaces and this
property persists for small perturbations of f . Dujardin constructed in [Du] a map with
a blender for which a part of the postcritical set belongs to the associated family of
hypersurfaces. This provides a robust intersection between the blender and the postcritical
set which turns out to be sufficient to have an open set in the bifurcation locus. The
same strategy can be followed in order to prove Theorem C except that instead of a
single intersection we need as many as possible (i.e. the dimension of the moduli space)
independent intersections, i.e. which satisfy the transversality condition of Definition 1.10.
To that end, we consider a map f with a blender Λ(f) and a saddle point p(f) whose
unstable manifold intersects robustly Λ(f). Observe that in the terminology of smooth
dynamics, this corresponds in our non-invertible context to a robust heterodimensional
cycles (see [BD4] for the interplays between these cycles and blenders in the C1-setting).
As the critical set has to intersect the stable manifold of p(f), the inclination lemma
gives infinitely many intersections between Λ(f) and the postcritical set of f . All the
difficulty in the proof is to check that they provide enough independent intersections. This
brings us to prove (very) partial generalizations to higher dimension of several results
from one-dimensional complex dynamics, like extension of local conjugacies [BE1], the
rigidity of stable algebraic families [Mc] or the fact that multipliers of periodic points give
(generically) local coordinates in the moduli space [Mc, Go, JX].

In the particular case of regular polynomial endomorphisms of the affine plane, we
consider bifurcations of the finite part of the critical set, i.e. of the closure Cf in P2 of
the set {z ∈ C2, det(Dzf) = 0}. In this case, the non-negativity of the Green function at
every place allows us to prove the following uniform result.
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Theorem D (Uniformity). Fix an integer d ≥ 2. There exists a constant B(d) ≥ 1 and
a non-empty Zariski open subset U ⊂ Poly2

d such for any f ∈ U(C), we have

#Preper(f) ∩ Cf ≤ B(d).

As mentioned before, similarly flavored uniform results already exist in complex dy-
namics and are a very important source of inspiration for us: the quotient S̃ := (End1

d ×
End1

d)/PGL(2) by the diagonal action by conjugacy is a quasiprojective variety. On a

suitable subvariety S of S̃, one wants to show that outside a Zariski closed set of S, then
all pairs of rational maps f, g : P1 → P1 will have at most B preperiodic points in com-
mon. This is a statement very similar to Theorem D where one considers Y to be the
fibered diagonal in P1 × P1 instead of the critical set. Then, such a result was first shown
by DeMarco, Krieger and Ye in the Legendre family [DKY1] and in the quadratic family
[DKY2]. Then, Mavraki and Schmidt proved it in the case of any algebraic curve S [MS].
Finally, DeMarco and Mavraki have shown very recently the optimal result that there is
a uniform bound B, depending only on the degree d, so that for a Zariski open and dense
set in the space of all pairs of rational maps f, g : P1 → P1 with degree d, f and g have at
most B preperiodic points in common [DM].

To prove Theorem D, we show in Theorem 7.7 that there is a height gap (there exists a
ε > 0 such that all points of canonical height ≤ ε are contained in a Zariski closed proper
subset of the fibered critical locus). For that, we follow the idea of Gao, Ge and Kühne
on abelian varieties [GGK] (first introduced by Ullmo [U] and Zhang [Zha2]) to overfiber
the dynamics (see also [MS] and [DM] where this strategy is also used). The fact that
local heights are all positive in the polynomial setting allows us to get the bound from the
complex place.

Remark. Thanks to [AB, Corollary 1.4], the same statement as that of Theorem D holds
in the family of all degree d polynomial skew-products with given postcritically finite
base p ∈ Q̄[z], as soon as p is neither conjugated to zd nor to the degree d Chebyshev
polynomial, see § 7.4.

Organization of the article. Section 1 is devoted to the construction of bifurcation
currents and the corresponding volume we will need to construct the m-order canonical
height. The proof of Theorem C occupies the next three sections. In Section 2, we establish
that the eigenvalues of the periodic points determine a conjugacy class up to finitely many
choices generically in M k

d and P2
d . In Section 3, we prove that if an open subset of M k

d

or Pk
d satisfies a certain set of assumptions and is not contained in the support of the

bifurcation measure then it has to contain lots of families where the eigenvalues of most
of the periodic points are constant. Open subsets verifying this large set of assumptions
are constructed in Section 4, for all k ≥ 2 and d ≥ 2. In Section 5, we prove important
height inequalities, and in particular Theorem A. Section 6 is devoted to the proof of the
needed Relative Equidistribution theorem. In Section 7, we prove Theorems B and D.

Acknowledgment. We would like to express our gratitude to DeMarco and Mavraki for
many discussions during the elaboration of this work and to Bonatti and Dujardin for
sharing their insight on blenders. The first author would also like to thank the IHES for
its hospitality.
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1. The dynamical volumes of a family of subvarieties

1.1. The canonical height over a function field of characteristic zero. In the
whole section, we let (X , f,L) be a family of polarized endomorphisms of degree d ≥ 2
with regular part X 0 → S0, and let Y ( X be a subvariety such that π(Y) = S and let
S0
Y be the maximal Zariski open subset of S0 such that π|Y is flat and projective over S0

Y .

Recall that the fibered Green current T̂f is the limit in the sense of currents on X 0(C)
of the sequence (d−n(fn)∗ω)n, where ω is any smooth form representing the cohomology

class c1(L) ∈ H1,1(X (C),R). The current T̂f is a closed positive (1, 1)-current of finite

mass on X 0(C) and, for any λ ∈ S0(C), the slice Tλ := T̂f |Xλ is the Green current of fλ,

see e.g. [GV] for more details. Furthermore, if k := dimXλ, we let µλ := degLλ(Xλ)−1 ·T kλ
be the unique maximal entropy measure of fλ, we call its support the small Julia set, and
denote it by Jk (or Jk(fλ) to stress the dependence of fλ) [BD6, DS4].

Definition 1.1. We say the tuple (X , f,L,Y) is a dynamical pair parametrized by S and
with regular part S0

Y .

Let M be an ample Q-line bundle on S. Let Yη be the generic fiber of the family
Y → S0

Y . Following [Zha1], we define

ĥfη(Yη) := lim
n→∞

d−n(dimYη+1)

(
(fn)∗{Y} · c1(L)dimYη+1 · c1(π∗M)dimS−1

)
(dimYη + 1) degYη(Lη)

.

The next lemma follows from [GV]:

Lemma 1.2. For any Y as above, ĥfη(Yη) is well-defined and satisfies ĥfη((fη)∗(Yη)) =

dĥfη(Yη). In addition, we can compute ĥfη(Yη) as

ĥfη(Yη) =
1

(dimYη + 1) degYη(Lη)

∫
X 0(C)

T̂
dimYη+1
f ∧ [Y] ∧ (π∗ωS)dimS−1,

where ωS is any smooth form representing c1(M).

Proof. Let q := dimYη and p := dimS. The fact that it is well-defined and the formula re-

lating the limit of d−n(q+1)
(
(fn)∗{Y} · c1(L)q+1 ∧ c1(π∗M)p−1

)
with T̂ q+1

f ∧[Y]∧(π∗ωS)p−1

are contained in [GV, Theorem B]. We then can compute

ĥfη((fη)∗(Yη)) =
1

(q + 1) degYη(f∗ηLη)

∫
X 0(C)

T̂ q+1
f ∧ (f∗[Y]) ∧ (π∗ωS)p−1

=
1

(q + 1)dq degYη(Lη)

∫
X 0(C)

T̂ q+1
f ∧ (f∗[Y]) ∧ (π∗ωS)p−1

=
1

(q + 1)dq degYη(Lη)

∫
X 0(C)

(
f∗
(
T̂ q+1
f ∧ (π∗ωS)p−1

))
∧ [Y]

=
dq+1

(q + 1)dq degYη(Lη)

∫
X 0(C)

T̂ q+1
f ∧ [Y] ∧ (π∗ωS)p−1 = dĥfη(Yη),

where we used that dimYη = q and π ◦ f = π. �
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In particular, the last part of the lemma states that the height ĥfη(Yη) is > 0 if and

only if the bifurcation current Tf,Y := π∗

(
T̂

dimYη+1
f ∧ [Y]

)
is not identically zero since∫

X 0(C)
T̂

dimYη+1
f ∧ [Y] ∧ (π∗ωS)dimS−1 =

∫
S0(C)

π∗(T̂
dimYη+1
f ∧ [Y]) ∧ ωdimS−1

S .

1.2. The higher bifurcation currents of a pair. As above, let (X , f,L,Y) be a dy-
namical pair parametrized by S with regular part S0

Y .

Let M be an ample Q-line bundle on S of volume 1. For any m ≥ 1, let X [m] :=
X ×S · · · ×S X and Y [m] := Y ×S · · · ×S Y be the respective m-fiber power of X and Y.
Denote also by πm : X [m] → S the morphism induced by π. We define f [m] as

f [m](x) = (ft(x1), . . . , ft(xm)), x = (x1, . . . , xm) ∈ Xm
t = π−1

[m]{t}.

For any 1 ≤ j ≤ m, we let pj : X [m] → X be the projection onto the j-th factor of the

fiber product and L[m] := p∗1L+ · · ·+ p∗mL. By construction and using T̂
dimXη+1
f = 0, we

have

(1) T̂f [m] = p∗1(T̂f ) + · · ·+ p∗m(T̂f ) and T̂
m dimXη
f [m] = C(m,dimXη)

m∧
j=1

p∗j

(
T̂

dimXη
f

)
,

where C(m,dimXη) :=
∏m
j=1

(j dimXη
dimXη

)
. We define higher bifurcation currents as follows:

Definition 1.3. For 1 ≤ m ≤ dimS, the m-bifurcation current of (X , f,L,Y) is the
closed positive (m,m)-current on S0

Y(C) given by

T
(m)
f,Y := (π[m])∗

(
T̂
m(dimYη+1)

f [m] ∧ [Y [m]]
)
.

The bifurcation measure of (X , f,L,Y) is

µf,Y := T
(dimS)
f,Y .

We give basic properties of those currents.

Proposition 1.4. The following properties hold

(1) For any 1 ≤ m ≤ dimS and any j ≤ m

T
(m)
f,Y ≥ T

(j)
f,Y ∧ T

(m−j)
f,Y ,

(2) For all m, T
(m)
f,Y 6= 0 implies T

(m−1)
f,Y 6= 0. Similarly, for all m ≥ dimS,

(π[m])∗

(
T̂ dimY [m]

f [m] ∧ [Y [m]]
)
≥ µf,Y .

(3) if dimYη = dimXη − 1, we have

µf,Y =

dimS∏
j=1

(
j dimXη

dimXη

)
·
(
T

(1)
f,Y

)∧ dimS
,

and for any m ≥ dimS, there is a constant Cm ≥ 1 such that

(π[m])∗

(
T̂ dimY [m]

f [m] ∧ [Y [m]]
)

= Cm · µf,Y .
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Proof. Fix 1 ≤ m ≤ dimS. For the sake of simplicity, let us only consider the case where
j = 1. Let pj : X [m] → X be the projection onto the j-th factor and π[m] : X [m] → S be
the canonical projection (so that π[1] is the projection X → S). Then

T̂
m(dimYη+1)

f [m] =
(
p∗1(T̂f ) + · · ·+ p∗m(T̂f )

)m(dimYη+1)
≥

m∧
j=1

p∗j

(
T̂

dimYη+1
f

)
as (p∗j T̂f )dimYη+1 = p∗j (T̂

dimYη+1
f ). Using the equality,

[Y [m]] =
m∧
j=1

p∗j ([Y]),

we deduce that for a positive test form φ of bidimension (m,m) on S0
Y ,

〈T (m)
f,Y , φ〉 = 〈(π[m])∗

(
T̂
m(dimYη+1)

f [m] ∧ [Y [m]]
)
, φ〉

= 〈T̂m(dimYη+1)

f [m] ∧ [Y [m]], π∗[m]φ〉

≥

〈
m∧
j=1

p∗j

(
T̂

dimYη+1
f ∧ [Y]

)
, π∗[m]φ

〉

≥

〈
T̂

dimYη+1
f ∧ [Y] ∧ (p1)∗

 m∧
j=2

p∗j

(
T̂

dimYη+1
f ∧ [Y]

) , π∗[1]φ

〉

where we used π∗[m]φ = p∗1(π∗[1]φ). By Fubini, we have

(p1)∗

 m∧
j=2

p∗j

(
T̂

dimYη+1
f ∧ [Y]

) = π∗[1]

(
(T

(1)
f,Y)m−1

)
so that

〈T (m)
f,Y , φ〉 ≥

〈
T̂

dimYη+1
f ∧ [Y] ∧ π∗[1]

(
(T

(1)
f,Y)m−1

)
, π∗[1]φ

〉
which gives the first point.

We prove the second point. Assume T
(m)
f,Y 6= 0. Then, we develop the product

T̂
m(dimYη+1)

f [m] =
(
p∗1(T̂f ) + · · ·+ p∗m(T̂f )

)m(dimYη+1)

in T
(m)
f,Y . We deduce that there exists (α1, . . . αm) with α1 + · · · + αm = m(dimYη + 1)

such that
m∧
j=1

p∗j

(
T̂
αj
f ∧ [Y]

)
> 0.

By symmetry, we can assume that α2 + · · · + αm ≥ (m − 1)(dimYη + 1). Take φ a test
form on S0

Y so that

0 6=

〈
m∧
j=1

p∗j

(
T̂
αj
f ∧ [Y]

)
, π∗[m](θ)

〉
=

〈
T̂α1
f ∧ [Y] ∧ p∗1

 m∧
j=2

p∗j

(
T̂
αj
f ∧ [Y]

) , π∗[1](θ)

〉
.
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In particular, we deduce that p∗1

(∧m
j=2 p

∗
j

(
T̂
αj
f ∧ [Y]

))
is non zero, which in turn implies

p∗1

(∧m
j=2 p

∗
j

(
T̂
α′j
f ∧ [Y]

))
where the α′j are integers such that α′j ≤ αj for all j and

α′2 + · · · + α′m = (m − 1)(dimYη + 1). This in turn implies that T
(m−1)
f,Y 6= 0. The case

m ≥ dimS is similar.
The proof of the third point is now similar to that of the first point. Indeed, assume

dimYη = dimXη−1, then p∗j (T̂f )dimYη+2∧p∗j ([Y]) = p∗j (T̂
dimYη+2
f ∧[Y]) = 0. In particular,

T̂
dimS(dimYη+1)

f [dimS] ∧ [Y [dimS]] =
dimS∏
j=1

(
j dimXη

dimXη

) dimS∧
j=1

p∗j

(
T̂f )dimYη+1 ∧ [Y]

)
and the rest follows. To conclude, take m ≥ dimS:

(π[m])∗

(
T̂ dimY [m]

f [m] ∧ [Y [m]]
)

= (π[m])∗

((
p∗1(T̂f ) + · · ·+ p∗m(T̂f )

)dimY [m]

∧ [Y [m]]

)
= (π[m])∗

((
p∗1(T̂f ) + · · ·+ p∗m(T̂f )

)m dimYη+dimS
∧ [Y [m]]

)
.

Developing all terms in the product and using T̂
dimYη+2
f ∧ [Y] = 0, we end up, up to

permutations, to a sum of terms of the form

(π[m])∗

dimS∧
j=1

(
p∗j (T̂

dimYη+1
f ∧ [Y]

)
∧

m∧
j=dimS+1

(
p∗j (T̂

dimYη
f ∧ [Y])

) .

The assertion now follows by Fubini. �

1.3. The dynamical volumes of a pair. As above, let (X , f,L,Y) be a dynamical pair
parametrized by S with regular part S0

Y . We now can define the dynamical volumes of Y
as follows

Definition 1.5. For any m ≥ dimS, we define the m-dynamical volume Vol
(m)
f (Y) of Y

for (X , f,L) as the non-negative real number

Vol
(m)
f (Y) :=

∫
(X [m])0(C)

T̂ dimY [m]

f [m] ∧ [Y [m]].

For any ample Q-line bundle M on S, we also define the m-parametric degree deg
(m)
f,M(Y)

of Y relative to M as

deg
(m)
f,M(Y) :=

∫
(X [m])0(C)

T̂ dimY [m]−1
f [m] ∧ [Y [m]] ∧ π∗[m] (ωS) ,

where ωS is any smooth form on S representing c1(M).

Remark 1.6. When dimS = 1, an easy computation gives

deg
(1)
f,M(Y) = degYη(Lη) · degM(S) > 0.

In particular, if degM(S) = 1, then

ĥfη(Yη) =
Vol

(1)
f (Y)

(dimYη + 1) · deg
(1)
f,M(Y)

.
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We can relate the non-vanishing of the bifurcation measure µf,Y with the non vanishing

of the volumes Vol
(m)
f (Y) for all m ≥ dimS.

Proposition 1.7. The following properties hold:

(1) We have µf,Y is non-zero if and only if for all m ≥ dimS, Vol
(m)
f (Y) > 0.

(2) For any integer m ≥ dimS, and for any ample Q-line bundle M on S of volume
1, we have

deg
(m)
f,M(Y) ≥ mdegYη(Lη)

m−dimS+1

∫
S0(C)

T
(dimS−1)
f,Y ∧ ωS ,

for any smooth form ωS which represents c1(M).

In particular, if µf,Y 6= 0, then for all m ≥ dimS, and all M, we have Vol
(m)
f (Y) > 0 and

deg
(m)
f,M(Y) > 0.

Proof. The first point follows from Proposition 1.4. Let p := dimS. To prove the second
point, we remark that

T̂ dimY [m]−1
f [m] ≥

 m∧
j=p

p∗`j T̂
dimYη
f

 ∧ p−1∧
j=1

(
p∗j T̂

dimYη+1
f

)
.

Let πp : X [m] → X [p−1] be the projection forgetting the m − p + 1 last variables and for

1 ≤ j ≤ p− 1, let p′j : X [p−1] → X be the projection onto the j-th factor. The measure m∧
j=p

p∗`j T̂
dimYη
f

 ∧ p−1∧
j=1

(
p∗j T̂

dimYη+1
f

)
∧ [Y [m]] ∧ π∗[m](ωS)

rewrites as

m∧
`=p

p∗`

(
T̂

dimYη
f ∧ [Y]

)
∧ (πp)

∗

p−1∧
j=1

(p′j)
∗
(
T̂

dimYη+1
f ∧ [Y]

)
∧ π∗[p−1](ωS)


where we used that π∗[p]ωS = (πp)

∗
(
π∗[p−1]ωS

)
. In particular, its volume is that of its

push-forward by πp, which is the measure

(πp)∗

 m∧
`=p

p∗`

(
T̂

dimYη
f ∧ [Y]

) ∧ p−1∧
j=1

(p′j)
∗
(
T̂

dimYη+1
f ∧ [Y]

)
∧ π∗[p−1](ωS).

We now remark that πp has fibers of dimension k(m − p + 1) := dimXm−p+1
η and that

T̂
dimYη
f ∧ [Y] is a (k, k)-current on X 0(C), so that the current

T := (πp)∗

 m∧
`=p

p∗`

(
T̂

dimYη
f ∧ [Y]

)
is a (0, 0)-current on (X [p−1])0(C) which is nothing but the constant degYη(Lη)

m−p+1.
Therefore, the volume of the studied measure is exactly

degYη(Lη)
m−p+1 ·

∫
S0(C)

T
(dimS−1)
f,Y ∧ ωS .
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As the wedge product is symmetric, proceeding similarly for the other terms of the sum,
we find

degf,M(Y) ≥ m · degYη(Lη)
m−p+1 ·

∫
S0(C)

T
(dimS−1)
f,Y ∧ ωS ,

and the proof of the second point is complete (observe that the second point of Proposi-

tion 1.4 guarantees that T
(dimS−1)
f,Y 6= 0). �

1.4. Dynamical volume as limits of iterated intersection numbers. Let (X , f,L)
be a family of polarized endomorphisms of degree d and Y ( X be a subvariety with
π(Y) = S. Let also m ≥ 1 be an integer and let (X [m], f [m],L[m]) be the polarized

endomorphism induced on X [m] := X ×S · · · ×S X as above with induced morphism
π[m] : X [m] → S and let Y [m] := Y ×S · · · ×S Y. One can check that π[m](Y [m]) = S and
we have the following which is essentially immediate.

Lemma 1.8. For any m ≥ 1, there is a sequence (X (m)
n )n≥0 of projective varieties, a

sequence ψ
(m)
n : X (m)

n → X [m] of birational morphisms which are isomorphisms above

the regular part of (X [m])0 and a sequence of morphisms F
(m)
n : X (m)

n → X [m] such that

X (m)
0 = X [m] and the following diagram commutes

X (m)
n

ψ
(m)
n
��

F
(m)
n

""
X [m]

(f [m])n
// X [m]

.

Moreover, one can choose X (m)
n as a finite sequence of blow-ups of X (m)

n−1.

Relying on estimates from [GV] we can deduce

Lemma 1.9. For any m ≥ dimS, there is a constant Cm ≥ 1 depending only on

(X , f,L,Y) and m such that for any n ≥ 1, if Y(m)
n := (F

(m)
n )∗(ψ

(m)
n )∗Y [m], then∣∣∣∣∣∣

(
{Y(m)

n } · c1(L[m])dimY [m]
)

dn dimY [m]
−Vol

(m)
f (Y)

∣∣∣∣∣∣ ≤ Cmd−n,
and, for any ample Q-line bundle M on S of volume 1,∣∣∣∣∣∣

(
{Y(m)

n } · c1(L[m])dimY [m]−1 · c1(π∗[m]M)
)

dn(dimY [m]−1)
− deg

(m)
f,M(Y)

∣∣∣∣∣∣ ≤ Cmd−n.
Proof. Let ωS be a smooth form on S(C) which represents c1(M) (it has mass 1 =
degS(M)) and ωL be a smooth form on X (C) which represents c1(L). For m ≥ dimS,

define ω[m] :=
∑

j p
∗
jω. Let (X [m])0 := π−1

[m](S
0
Y) as above. By definition, we have(

{Y(m)
n } · c1(L[m])dimY [m]

)
=

∫
(X [m])0(C)

(
ω[m]

)dimY [m]

∧ [Y(m)
n ]

=

∫
(X [m])0(C)

(
((f [m])n)∗ω[m]

)dimY [m]

∧ [Y [m]].
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We rely on Proposition 3.4 of [GV]: we have

d−n dimY [m]
(
{Y(m)

n } · c1(L[m])dimY [m]
)

=

∫
(X [m])0(C)

T̂ dimY [m]

f [m] ∧ [Y [m]] +O

(
1

dn

)
.

This is the first assertion we want to prove. Similarly,

In,m : =

(
{Y(m)

n } · c1(L[m])dimY [m]−1 · c1(π∗[m]M)

)
=

∫
(X [m])0(C)

(
((f [m])n)∗ω[m]

)dimY [m]−1
∧ [Y [m]] ∧ (π∗[m]ωS)

and the same argument using Proposition 3.4 of [GV] gives

d−n(dimY [m]−1)In,m =

∫
(X [m])0(C)

T̂ dimY [m]−1
f [m] ∧ [Y [m]] ∧ π∗[m](ωS) +O

(
1

dn

)
.

This concludes the proof. �

1.5. A sufficient criterion for positive volume. To finish this section, we would like
to give a sufficient criterion for a parameter to belong to the support of the measure µf,Y .
The existence of such a parameter implies in particular that Volf (Y) > 0.

Definition 1.10. Pick an integer m ≥ 1. We say that Y is m-transversely Jk-prerepelling
(resp. properly Jk-prerepelling) at a point z = (z1, . . . , zm) ∈ X [m] with λ0 := π[m](z) ∈ S0

if z1, . . . , zm are Jk(fλ0)-repelling periodic points of fλ0 and if there exist an integer N ≥ 1
and a neighborhood U of λ0 such that, if zj(λ) is the natural continuation of zj as a
repelling periodic point of fλ in U , then

(1) zj ∈ fNλ0(Yλ0) for all 1 ≤ j ≤ m,
(2) zj(λ) ∈ Jk(fλ) for all λ ∈ U and all 1 ≤ j ≤ m,

(3) the image of the local section Z : λ ∈ U 7→ (z1(λ), . . . , zm(λ)) ∈ (X [m])0 of π[m]

intersects transversely a local branch of (f [m])N (Y [m]) at z (resp. z lies in an

proper intersection between the image of Z and a local branch of (f [m])N (Y [m]) of
pure dimension dimS −m).

In some sense, this definition is equivalent to the existence of m independent Misiurewicz
intersections. The case of single Misiurewicz intersections corresponds to Misiurewicz
parameters in [BBD]. The third point in the definition seems a bit technical but in the

examples we will construct, we cannot a priori exclude the case where Y [m] is not locally
irreducible and the periodic points lie persistently in a local branch of Y but transversely
to another local branch. Another important remark for what follows is that, as observed
by Dujardin (see [Du, Proposition-Definition 2.5]), the repelling periodic points can be
replaced by points in a repelling hyperbolic set contained in Jk. Finally, notice that when
m = dimS and Y is locally irreducible near z1, . . . , zm, Definition 1.10 is exactly what
DeMarco and Mavraki [DM] call a rigid m-repeller.

We prove the following, which is a general criterion in the spirit of [DM, Proposition 4.8].

Proposition 1.11. Let (X , f,L) be a family of polarized endomorphisms parametrized by
S and let Y ( X be a hypersurface which projects dominantly to S. Let 1 ≤ m ≤ dimS
and assume Y is m-properly Jk-prerepelling at z ∈ (X [m])0. Then

z ∈ supp
(
T̂
m(dimYη+1)

f [m] ∧ [Y [m]]
)

.
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In particular, π[m](z) ∈ supp(T
(m)
f,Y ).

The proof of this result is an adaptation of the strategy of Buff and Epstein [BE2] and
the strategy of Berteloot, Bianchi and Dupont [BBD], see also [Ga2, AGMV, Ga1, GV].

Proof of Proposition 1.11. As the statement is purely local, we let B ⊂ S0 be a ball in

a local coordinate centered at λ0. Since T̂f has continuous potentials, for any analytic
submanifold Λ ⊂ B of dimension m with λ0 ∈ Λ, we have

supp

(
T̂
m(dimYη+1)

f [m] |π−1
[m]

(Λ) ∧ [Y [m] ∩ π−1
[m](Λ)]

)
⊂ supp

(
T̂
m(dimYη+1)

f [m] ∧ [Y [m]]
)

by e.g. [Ga2, Lemma 6.3]. In particular, we can replace B with the intersection between
B with a subspace B ∩ V where V is a linear subspace of dimension m such that the
intersection between the image of the local section Z : λ ∈ U ∩ V 7→ (z1(λ), . . . , zm(λ)) ∈
(X [m])0 of π[m] and the a local branch of (f [m])N (Y [m]) at z is isolated in (X [m])0 ∩
π−1

[m](B ∩ V ). In the rest of the proof, we thus can assume m = dimS and let k be the

relative dimension of X over S so that dimYη + 1 = k. To simplify notations, write

F := f [m] : (X [m])0 → (X [m])0 and we let µ := T
(m)
f,Y |B.

Our aim here is to exhibit a basis of neighborhood {Ωn}n of λ0 in B with µ(Ωn) > 0

for all n. For a Borel subset B ⊂ B, let (X [m])B := π−1
[m](B), where π[m] : X [m] → S is the

map induced by π : X → S. Then, since F ∗T̂F = dT̂F , we have

(Fn)∗
(
T̂ kmF

)
= dmknT̂ kmF and µ(B) = d−kmn

∫
(X [m])B

T̂mkF ∧ (Fn)∗

[
Y [m]

]
.

Since Y is properly Jk-prerepelling at λ0, there are z1, . . . , zm ∈ Xλ0 , Jk(fλ0)-repelling

periodic points and N ≥ 1 such that (z1, . . . , zm) ∈ FN (Y [m])0. Let p ≥ 1 be such that

fpλ0(zi) = zi for all i. We let Y0 be the local branch of (FN )(Y [m])0 satisfying the hypothesis

of the Proposition. For any integer n ≥ 1, we let Yn := (Fnp)(Y0), so that dim(Yn) = mk
and

In :=

∫
(X [m])B

T̂mkF ∧ [Yn] ≤ dknmµ(B).

Up to reducing B, we can assume zi(λ) is Jk(fλ)-repelling for all λ ∈ B and that there is
K > 1 such that

d(fpλ(z), fpλ(w)) ≥ K · d(z, w)

for all z, w ∈ B(zj , ε) ⊂ X and all λ ∈ B for some given ε > 0 with π(B(zj , ε)) ⊂ B [BBD].

Thus, if we denote z := (z1, . . . , zm) ∈ X [m] and by Sn the connected component of Yn∩Bε
where Bε := BX [m](z, ε), the current [Sn] is vertical-like in Bε and there exist n0 ≥ 1 and
a basis of neighborhood Ωn of λ0 in B such that for all n ≥ n0

supp([Sn]) = Sn ⊂ X [m]
Ωn
∩Bε.

Let S be any weak limit of the sequence [Sn]/‖[Sn]‖, where the mass ‖[Sn]‖ is computed

with respect to some Kähler form α on X [m]
B . Then S is a closed positive (k, k)-current of

mass 1 in Bε whose support is contained in the fiber Xm
λ0

of π[m]. Hence S = M · [Xm
λ0
∩Bε],

where M−1 > 0 is the volume of Bε for the volume form α|Xm
λ0

.
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As a consequence, [Sn]/‖[Sn]‖ converges weakly to S as n→∞ and, since the (mk,mk)-

current T̂ kmF is the mk-times wedge product of a closed positive (1, 1)-current with con-
tinuous potential,

T̂ kmF ∧ [Sn]

‖[Sn]‖
−→ T̂ kmF ∧ S

as n→ +∞. Whence the above gives

lim inf
n→∞

(
‖[Sn]‖−1 · In

)
≥ lim inf

n→∞

∫
T̂ kmF ∧ [Sn]

‖[Sn]‖
≥
∫
T̂ kmF ∧ S

≥ M ·
∫
T̂ kmF ∧ [Xm

λ0 ∩Bε].

In particular, there exists n1 ≥ n0 such that for all n ≥ n1,

2‖[Sn]‖−1 · In ≥M
∫
T̂ kmF ∧ [Xm

λ0 ∩Bε].

Finally, by construction of Sn, we have lim infn→∞ ‖[Sn]‖ ≥ Vol(Bε) > 0, where the
volume is computed with respect to the Kähler form α|Xm

λ0
on Xm

λ0
. Up to increasing n0,

we may assume ‖[Sn]‖ ≥ c > 0 for all n ≥ n0. Letting γ = Mc/4 > 0, we find

µ(B) = d−km(np+N)In ≥ d−km(np+N)γ

∫
T̂ kmF ∧ [Xm

λ0 ∩Bε],

for all n ≥ n1. To conclude, we need to prove the last integral is non-zero. By construction,
the set Xm

λ0
∩Bε is an open neighborhood of z in Xm

λ0
whence it contains B(z1, δ)× · · · ×

B(zm, δ) ⊂ Xm
λ0

for some δ > 0 (with a slight abuse of notations since here the balls are

meant in Xλ0). Moreover, the current T̂ kmF restricts to Xkm
λ0

as the measure

T̂ kmF |Xm
λ0

= µFλ0 = µ⊗mfλ0
.

In particular, we can apply Fubini Theorem to find∫
T̂ kmF ∧ [Xm

λ0 ∩Bε] ≥
∫
Xλ0

T̂ kmF ∧ [B(z1, δ)× · · · ×B(zm, δ)] =

m∏
j=1

µfλ0 (B(zj , δ)) > 0,

where we used that zj ∈ supp(µfλ0 ) by assumption. �

2. Rigidity of some stable families

2.1. Spaces of endomorphisms, moduli spaces, stable families.

2.1.1. The spaces Endkd and Polykd. As an endomorphism f of Pk of degree d is given by
k+ 1 homogeneous polynomials of degree d, the coefficients of these polynomials allow us

to see f as a point in PNk
d where Nk

d := (k+ 1)
(
k+d
d

)
− 1. The condition on the coefficients

to ensure that the associated map is an endomorphism of Pk is algebraic so there exists a

Zariski open set Endkd ⊂ PNk
d corresponding to degree d endomorphisms. More precisely,

the variety Endkd is the complement of the hypersurface in PNk
d defined by the vanishing

of the Macaulay resultant (see, e.g., [BB1] for details). In particular, it is an irreducible
smooth quasi-projective variety defined over Q. In particular, the map

f : Pk
Endkd

−→ Pk
Endkd
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is a family (Pk
PN

k
d
, f,OPk(1)) of degree d endomorphisms of Pk parametrized by PNk

d – if

we follow the notations introduced above – which is defined over Q.

A regular polynomial endomorphism f : Ak → Ak of degree d ≥ 2 is a polynomial map
which extends to a degree d endomorphism f : Pk → Pk. For such a morphism, if H∞
is the hyperplane at infinity of Ak in Pk, we have f−1(H∞) = H∞, , see, e.g., [BJ]. The

space Polykd of regular polynomial endomorphisms of degree d of Ak is a smooth closed

subvariety of Endkd of dimension k
(
k+d
d

)
– which is the intersection of Endkd with a linear

subspace of PNk
d defined over Q. In particular, Polykd is also a smooth quasi-projective

variety defined over Q and the map

f : Pk
Polykd

−→ Pk
Polykd

is a family (PkS , f,OPk(1)) of degree d endomorphisms of Pk parametrized by the closure

S of Polyd in PNk
d – if we follow the notations introduced above – which is defined over Q.

2.1.2. The moduli spaces M k
d and Pk

d . The first family we want to investigate is the

moduli space M k
d of degree d endomorphisms of the projective space Pk of dimension k: it

is the quotient space of the space Endkd of endomorphisms of degree d of Pk by the action
by conjugacy of PGL(k + 1). It is known to be an irreducible affine variety of dimension

N k
d := dim M k

d = (k + 1)

(
k + d

d

)
− (k + 1)2

defined over Q, see [Si2] when k = 1 and [PST] when k > 1, whence there is a proper
closed subvariety V such that the canonical projection

Π : Endkd \ V →M k
d \Π(V )

is an PGL(k + 1)-principal bundle. We consider the universal family

f : Pk
M k
d
−→ Pk

M k
d

which is a family (PkS , f,OPk(1)) of degree d endomorphisms of Pk parametrized by a

projective model S of M k
d with regular part M k

d – if we follow the notations introduced
above – which is defined over Q.

The second family we investigated is the moduli space Pk
d of degree d regular polynomial

endomorphisms of the affine space Ak: it is the quotient of the space Polykd of regular
polynomial endomorphisms of degree d of the affine space Ak by the action by conjugacy
of Aut(Ak) = GL(k) n Ak. The same proof as those given in [Si1, PST] ensures that the
moduli space Pk

d is also a fine moduli space and is an irreducible affine variety defined
over Q of dimension

Pkd := dim Pk
d = k

(
k + d

d

)
− (k2 + k) > N k−1

d = dim M k−1
d .

We also consider the universal family

f : Pk
Pk
d
−→ Pk

Pk
d

and as above, this is a family (PkS , f,OPk(1)) of degree d endomorphisms of Pk parametrized

by a projective model S of Pk
d with regular part Pk

d which is defined over Q. As before,
there is a proper closed subvariety V such that the canonical projection

Π : Polykd \ V →Pk
d \Π(V )
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is an Aut(Ak)-principal bundle.

2.1.3. Stable families of endomorphisms of Pk following Berteloot-Bianchi-Dupont. Let M
be a connected complex manifold. An analytic family of endomorphisms of Pk parametrized
by M can be described as a surjective holomorphic map f : (z, t) ∈ Pk×M 7−→ (ft(z), t) ∈
Pk ×M . In particular, for any t ∈M , the induced map ft : Pk → Pk is an endomorphism
of degree d (independent of t ∈M).

Following Berteloot, Bianchi and Dupont [BBD], we say that such an analytic family
of endomorphisms of Pk is Jk-stable if the function

t ∈M 7−→ L(ft) :=

∫
Pk(C)

log |det(Dft)|µft ,

is a pluriharmonic function on M , i.e. ddctL(ft) ≡ 0, where L(ft) is the sum of Lya-
punov exponents of the unique maximal entropy measure µft of ft. Berteloot-Bianchi-
Dupont gave several equivalent description of this notion of stability and showed it is
the higher-dimensional equivalent to the notion of stability introduced by Mañé, Sad and
Sullivan [MSS] for families of rational maps of P1.

When M is a quasi-projective variety, and f is a morphism and, if S is a projective
model of M , (Pk ×M,f,OPk(1)) is a family of endomorphisms as above with regular part
M . In this case, one can show that the family M is Jk-stable if and only if the function
t 7→ L(ft) is constant on M and, by [BB1], one also has

ddcL = π∗

(
T̂ kf ∧ [Crit(f)]

)
= Tf,Crit,

as currents on M , so that the family is Jk-stable if and only if Tf,Crit(f) = 0 on M . Here

Crit(f) = {(z, t) ∈ Pk ×M, det(Dft)(z) = 0}.

2.2. Families with many constant multipliers. Let d ≥ 2 and S be an irreducible
complex projective variety. Let (PkS , f,OPk(1)) be a family of endomorphisms of Pk of
degree d, parametrized by a Zariski open subset S0 of S. Let t0 ∈ S0 be an arbitrary
parameter in this family. We consider a non-decreasing sequence (mn)n≥1 of positive
integers and a sequence of points (xn)n≥1 in Pk such that

• for each n ≥ 1, xn is a repelling periodic point for ft0 of exact period mn,
• no two such point xn and xn′ belong to the same orbit of ft0 ,
• if for s ≥ 1 we set Ms := {n ≥ 1 ; mn ≤ s} then Ms/(sd

sk) converges to 1 when s
goes to ∞/

In other words, the last point says that most of the periodic cycles of ft0 are orbits of
points in (xn)n≥1. From these data, for each n ≥ 1 we consider the analytic set

X̃n :=
{

(t, z1, . . . , zn) ∈ S0 × (Pk)n ; fmst (zs) = zs for all 1 ≤ s ≤ n
}
.

Observe that, since the points in the sequence (xn)n≥1 are repelling, the point (t0, x1, . . . , xn)

is regular in X̃n and we denote by Xn the irreducible component of X̃n which contains
it. The natural projection πn : Xn → S0 is surjective and finite. We also have a family of
multiplier maps Λn : Xn → Cn defined by Λn(t, z1, . . . , zn) = (detDzsf

ms
t )1≤s≤n

Proposition 2.1. Assume that there exists t1 ∈ S0 such that there is no algebraic curve
Z ⊂ S0 passing through t1 such that Z is Jk-stable. Then for n ≥ 1 large enough the
multiplier map Λn is generically finite-to-one.
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Proof. Observe first that, the maps Λn contain more and more information, if the result
holds for one n0 ≥ 1 then it is also the case for all n ≥ n0. Assume by contradiction that
for each n ≥ 1 the map Λn is not generically finite. In particular, for each n ≥ 1 the set
Yn = Λ−1

n (Λn(t1)) has positive dimension. The sequence of algebraic set (Zn)n≥1 defined
by Zn := πn(Yn) is decreasing so there exists N ≥ 1 such that Zn = ZN for all n ≥ N .
From this, the key observation is that, relying on the equidistribution of repelling orbits
[BD6], we have by [BDM, Theorem 1.5] (see also [BD2, Theorem 4.1]) for all t ∈ S0,

lim
n→+∞

1

dkn

∑
p∈RPern(ft)

log | det(Dft)(p)| = L(f)

where RPern(ft) is the set of n-periodic repelling points of ft and L(ft) the sum of the
Lyapunov exponents of its equilibrium measure. This implies by the chain rules that

lim
n→+∞

1

ndkn

∑
p∈RPern(ft)

log | det(Dfnt )(p)| = L(ft)

or equivalently

lim
n→+∞

1

ndkn

∑
p∈Pern(ft)

log+ |det(Dfnt )(p)| = L(ft)

where log+ x = max(log x, 0) and Pern(ft) is the set of all n-periodic points of ft. In
particular, as we have assume that Ms/(sd

sk)→ 1 with s where Ms := {n ≥ 1 ; mn ≤ s},
the fact that all the functions Λn are constant on Yn implies that t 7→ L(ft) is also constant
on ZN . In particular ZN is a Jk-stable family containing t1. Contradiction. �

Using isolated Lattès maps, we easily have the following result which answers by the
positive to the first part of [DS5, Question 19.4], a description of the set Γ in the next
corollary is a much more difficult question. Note that in dimension 1, this follows from
the work of McMullen [Mc] and that a stronger statement using only the modulus of the
multipliers has been recently given in [JX] using non-archimedean methods.

Corollary 2.2. Let d ≥ 2 and k ≥ 1. If (mn)n≥1, (xn)n≥1 and (Λn)n≥1 are as above with
X = M k

d then there exist N ≥ 1 and a Zariski closed proper subset Γ of M k
d such that Λn

is finite-to-one on M k
d \ Γ for all n ≥ N .

Proof. We simply apply Proposition 2.1 with ft1 equal to an isolated Lattès map. By
Berteloot and Dupont [BD1], Lattès maps are the only minimum of the Lyapunov function
L so if ft1 is an isolated Lattès map, there is no stable family in M k

d containing it.
To construct such map, take g : P1 → P1 an isolated Lattès map of degree d (which

always exists by Milnor [Mi]), and if ft1 is the k-symmetric power of g, we claim ft1 is an
isolated Lattès map in M k

d . Indeed, by [Yo, ALA], any Lattès map f : Pk → Pk comes

from an isogeny I : A → A of an abelian variety A which is isogenous to Ek, where E is
an elliptic curve. If ft1 were not isolated, then it would be approximated by Lattès maps
that in turn could be written as fg′ but then, g′ would approximate g which contradicts
the fact that g : P1 → P1 is an isolated Lattès map. �

2.3. Families of regular polynomial endomorphisms of the affine plane. In order
to apply Proposition 2.1 on the moduli space P2

d , we prove the following rigidity result.

Theorem 2.3. Let d ≥ 2. Let g be a rational map of P1 of degree d which is not a flexible
Lattès map. Moreover, assume that
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i) g possesses at least 3 postcritical repelling periodic points,
ii) for one of this postcritical repelling periodic point y1 we have that

{a ∈ P1 ; there exists n ≥ 1, gn(a) = y1 and a is not in the critical set of gn}
is dense in the Julia set Jg of g.

Let (P2 × Z, f,OP2(1)) be a stable family of regular polynomial endomorphisms of C2 of
degree d, parametrized by an irreducible algebraic curve Z. If there exists λ0 ∈ Z such that
fλ0 is equal to the lift of g to C2 then the family (P2 × Z, f,OP2(1)) is isotrivial.

To the best of our knowledge, this is the first rigidity result in higher dimension which
is not a direct consequence of one-dimensional results. However, the assumptions are
probably far to be sharp. In particular, the point ii) above could be probably easily
removed.

Proof. We will use several results of Bedford-Jonsson on regular polynomial endomor-
phisms of C2 obtained in [BJ].

Let λ be in Z. If Critfλ denotes the critical set of fλ in P2, we set Cλ := Critfλ \ L∞.
The critical measure of fλ is µc,λ := Tλ ∧ [Cλ], where Tλ is the Green current of fλ. In

C2, Tλ = T̂ |P2×{λ} is equal to the ddc of the Green function Gλ of fλ, which is non-

negative on C2 and positive exactly outside the set Kλ of points of C2 with bounded orbit.
Bedford-Jonsson proved in particular that the sum L(λ) of the Lyapunov exponents of the
equilibrium measure µλ := Tλ ∧ Tλ verifies

L(λ) = log d+ `(λ) +

∫
Gλµc,λ,

where `(λ) is the Lyapunov exponent associated to fλ|L∞ .
As the family is stable, λ 7→ L(λ) is a harmonic function on Z. Since it is positive, it has

to be constant. Actually, both maps λ 7→ `(λ) and ˜̀: λ 7→
∫
Gλµc,λ are also constant. To

see this, first remark that the critical set Critf ⊂ P2×Z of the family can be decomposed
as Crit(f) = (L∞×Z)∪Cf . Moreover, by [BB1, P], the bifurcation current ddcL is equal

to πZ∗(T̂
2
f ∧ [Crit(f)]), see § 2.1. It follows easily that ddc` = πZ∗(T̂

2
f ∧ [Z × L∞]) and

ddc ˜̀= πZ∗(T̂
2
f ∧ [Cf ]). Hence, both ` and ˜̀ are subharmonic. They are also positive and

their sum is harmonic on Z. Thus, they are constant.
This has two consequences. First, at the parameter λ0 the map fλ0 is the lift of g to P2

so L(λ0) = log d + `(λ0), i.e. ˜̀(λ0) :=
∫
Gλ0µc,λ0 = 0. Hence, ˜̀(λ) = 0 for all λ ∈ Z. In

other words, the critical measure µc,λ is supported in Kλ. On the other hand, (fλ|L∞)λ∈Z
is an algebraic stable family of rational maps on P1 so by [Mc] it has to be isotrivial since
fλ0|L∞ is not a flexible Lattès map. Up to a finite cover of Z, we can then do a family of
affine conjugations in order to have for each λ ∈ Z

• fλ|L∞ = g,

• 0 ∈ C2 is a fixed point of fλ, which is the continuation of the center of the pencil
of curves preserved by fλ0 .

Observe that there is still one degree of freedom, corresponding to homothety of center 0,
which will be used latter.

We denote by X ′ the set of preperiodic critical points of g and by Y ′ its set of postcritical
periodic points. The subset Y ⊂ Y ′ corresponds to repelling postcritical periodic points
and X ⊂ X ′ to points which are eventually sent in Y . We also choose two integers N ≥ 1
and m ≥ 1 such that gN (X ′) ⊂ Y ′ and gm(y) = y for each y ∈ Y ′. Observe that by i) the
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set Y has at least 3 points. From that, the proof has four main steps. Notice that in what
follows, we identify P1 with L∞.

(1) For each λ, each irreducible component of the critical set of fλ which contains a
point of X has to be preperiodic.

(2) The periodic irreducible components of the postcritical set of fλ passing through
points of Y are lines containing 0. In other words, there exists a set of at least 3
lines L = {Ly ; y ∈ Y } where each Ly is fλ-periodic for all λ ∈ Z.

(3) The pencil of lines P passing through 0 has to be preserved by each fλ.
(4) Up to homothety, there is a unique regular polynomial of C2 preserving P acting

as g on L∞.

Let us prove these four claims. Observe that the delicate one is (3) and that our proof
is strongly inspired by [Mc] where the difficulties coming from unlabelled holomorphic
motion are highlighted. In our very special situation, we use the lamination coming from
[BJ, Theorem 8.8] to overcome possible monodromy problems.

Proof of (1). Let x be in X i.e a critical point of g whose image by gN is a repelling
m-periodic point y. Let λ be in Z and let C be an irreducible component of Cλ passing
through x. The point y must be of saddle type for fλ, repelling in the direction of L∞
and super-attracting in the transverse direction. In particular, it admits a local stable
manifold W s

y,loc. On the other hand, µc,λ = Tλ ∧ [Cλ] vanishes near x so (fnλ|C)n≥0 is a

normal family near x. The saddle nature of y gives that the only possible limit value of

(f
N+nm)
λ|C )n≥0 near x is the constant function equal to y, i.e. (f

N+nm)
λ|C )n≥0 converges to

this constant function on a neighborhood V of x in C. This implies that fNλ (V ) ∩W s
y,loc

is a neighborhood of y in W s
y,loc and thus, fNλ (C) is m-periodic.

Proof of (2). Let L′ = {Ly ; y ∈ Y ′} be the periodic postcritical lines for fλ0 in the

pencil P. Observe that fmλ0|Ly is conjugated to zd
m

with a Julia set Sy which is uniformly

hyperbolic.
Let λ be close enough to λ0. Let y ∈ Y and let D be an irreducible component of

the postcritical set of fλ containing y. As we have already seen, D is m-periodic and D
is locally equal to the stable manifold of y near this point. In particular, D intersects
transversely L∞ at y. Moreover, by [DS2, Lemma 6.2], fmλ|D has a topological degree

equal to dm and thus, using a normalization, it has a unique measure of maximal entropy
m log d.

On the other hand, since λ is close to λ0, D is close to a union ∪y′∈ILy′ with I ⊂ Y ′.
For each y′ ∈ I, the holomorphic motion of Sy′ gives a hyperbolic set of entropy m log d
for fmλ|D and thus, by uniqueness of the measure, we have that I is reduced to a point and

thus I = {y}. In particular, the intersection points of D with L∞ are postcritical periodic
points close to y. As this set of points is discrete in L∞ and independent of λ, D ∩ L∞ is
reduced to {y} for λ close enough to λ0. Furthermore, we have seen that this intersection
is transverse. Thus, D has degree 1.

Finally, as λ is close to λ0, 0 is attracting and D intersects its basin of attraction. By
invariance of D, 0 is in D.

This proves the result in an euclidean neighborhood of λ0. Since it is a closed property
in the Zariski topology, it holds for all λ ∈ Z.

Proof of (3). Let denote by L1 the line of P containing y1 ∈ Y , the postcritical periodic
point of g given by ii). As we have seen, L1 is m-periodic for all fλ, λ ∈ Z. Since the Julia
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set of fmλ0|L1
is contained in the small Julia set of fλ0 , by [BBD, Theorem 1.1] the family

(fmλ|L1
)λ∈Z is stable. Indeed, in dynamics in dimension 2 J-stability is equivalent to the fact

that J-repelling periodic points move holomorphically and remain repelling. In particular,
all repelling periodic points of fmλ|L1

move holomorphically and remain repelling. By [Mc],

it has to be isotrivial. Hence, each fmλ|L1
is holomorphically conjugated to fmλ0|L1

, i.e. to

z 7→ zd
m

. In particular, up to a finite cover of Z and using a family of homotheties of C2,
we can assume that fmλ|L1

is independent of λ.

Let fix λ ∈ Z for a moment and let denote by Aλ the basin of L∞, i.e. Aλ := P2\Kλ. As∫
Gλµc,λ = 0, by [BJ, Theorem 8.8], there exists a fλ-invariant lamination by holomorphic

discs {Wa,λ | a ∈ Jg} in Aλ parametrized by the Julia set Jg of g, such that Wa,λ \ {a} is
either contained in the critical set of fλ or disjoint from it. Moreover, Wa,λ is contained
in the stable manifold of a for a generic a ∈ Jg. Here, genericity is with respect to the
equilibrium measure of fλ|L∞ = g. For the point y1 defined above, Wy1,λ corresponds to
the basin of attraction of y1 for fmλ|L1

. As we have seen, this set is independent of λ and

we denote it by Wy1 .
Let n ≥ 1 and let an ∈ g−n(y1) such that an is not in the critical set of gn and

an /∈ Y . Observe that the set Wan,λ satisfies fnλ (Wan,λ) = Wy1 (and thus is contained in

the algebraic set f−nλ (L1)) and that Wan,λ \{an} is disjoint from the critical set of fnλ . Let
w ∈Wy1 \ {y1}. The set P := {z ∈Wan,λ0 | fnλ0(z) = w} has exactly dn points. Moreover,
if γ is a loop in Z and z ∈ P then the fact that Wan,λ \ {an} is disjoint from the critical

set of fnλ ensures that we can follow z along γ as a point in f−nλ (w) ∩Wan,λ. This gives
an action of π1(Z, λ0) on P by permutations. But, π1(Z, λ0) is generated by a finite set
of elements {γ1, . . . , γs} thus the subgroup Hn := 〈γdn!

1 , . . . , γd
n!
s 〉 has finite index and acts

trivially on P . On the finite branch cover Zn associated to Hn, the points in P can be
followed holomorphically, i.e. there exists a family (φz)z∈P of holomorphic maps from Zn
to P2 such that φz(λ0) = z and fnλ (φz(λ)) = w for all z ∈ P and λ ∈ Zn.

From this, there are two key observations. First, Wan,λ is disjoint from Ly for y ∈ Y
since an /∈ Y . Hence, if π : P2 \ {0} → L∞ denotes the linear projection, ψz := π ◦ φz
defines maps from Zn to P1 \Y . The other important observation is that the branch cover
Zn is independent of the choice of w ∈ Wy1 \ {y1}. Thus, for each z ∈ Wan,λ0 we can
associated φz : Zn → P2 \ {Ly ; y ∈ Y } and ψz := π ◦ φz : Zn → P1 \ Y . As the set of
non-constant holomorphic maps from Zn to P1 \ {y1, . . . , zk} is finite and that z 7→ ψz(λ)
is continuous for each λ ∈ Zn, the maps ψz are either all constant or all equal. In both
case, the fact that φz(λ) converges to an when z → an implies that each φz is constant

equals to an. In other words, Wan,λ is contained in Lan := π−1(an). Since the set of all
possible an for all possible n ≥ 1 is dense in Jg, each map fλ satisfies π ◦ fλ = g ◦ π on
π−1(Jg). This set is not pluripolar in P2 \ {0} so π ◦ fλ = g ◦ π on P2 \ {0}, i.e. fλ must
preserve the pencil of line P defined by π.

Proof of (4). Let λ ∈ Z. Since fλ preserves P, it is of the form

fλ[x : y : z] = [P (x, y) : Q(x, y) : Rλ(x, y, z)],

where g[x, y] = [P (x, y) : Q(x, y)]. But fλ is also a regular polynomial endomorphism of
C2 so Rλ(x, y, z) = cλz

d. �

Remark 2.4. A similar result can probably be proved in higher dimension, i.e. for an
algebraic family (Pk×Z, f,OPk(1)) of regular polynomial endomorphisms of Ck which are
stable in the sense of [BBD]. There are two main difficulties. The first one is the lack
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of rigidity results for the family (H∞ × Z, f,OPk(1)|H∞) where H∞ is the hyperplane at
infinity. This can be easily overcome by choosing fλ0|H∞ to be a non-flexible Lattès map
in higher dimension. We still have that the sum of the Lyapunov exponents associated
to fλ|H∞ is independent of λ. Hence, using the characterization [BD1] of Lattès maps,
we obtain that the induced family on the hyperplane at infinity is isotrivial. The sec-
ond difficulty is probably more serious and is related to the hyperbolicity of the triply
punctured Riemann sphere. Results about the hyperbolicity of the complement of several
hypersurfaces in projective space are known and a generalization of (2) above should be
sufficient to obtain such hyperbolicity. However, this could take some work.

In particular, Corollary 2.2 also holds on P2
d .

Corollary 2.5. Let d ≥ 2. Let (mn)n≥1, (xn)n≥1 and (Λn)n≥1 be as in Section 2.2 whith
X = P2

d . There exist N ≥ 1 and a Zariski closed proper subset Γ of P2
d such that Λn is

finite-to-one on P2
d \ Γ for all n ≥ N .

Proof. The proof is the same than Corollary 2.2 except that for the map ft1 we take the lift
fλ0 from Theorem 2.3. Observe that in order to find a rational map g as in this theorem,
it is sufficient to take a polynomial map with a postcritical repelling point of period 5. �

3. Blenders and the bifurcation measures

Our goal here is to prove that an open set Ω of M k
d or P2

d which satisfies a large set
of assumptions (see § 3.2) has to be contained in the support of the bifurcations measure.
More precisely, if it is not the case then by Theorem 3.4 below, Ω contains in a dense
way positive dimensional subvarieties where the eigenvalues of all the periodic points on
the small Julia set are constant. This contradicts Corollary 2.2 or Corollary 2.5. Observe
that unlike the rest of the article, the families we consider here can be transcendental and
are not necessarily closed. Except for Theorem 3.4 which only holds for k = 2 in the
polynomial case, all the proofs in this section are the same for M k

d and for Pk
d . Hence, we

focus our attention on the case of M k
d . The only difference for Pk

d is that the dimensions

below, Nk
d and N k

d , have to be replaced by the dimension of Polykd (i.e. k
(
k+d
d

)
) and the

dimension of Pk
d (i.e. k

((
k+d
d

)
− (k + 1)

)
) respectively.

Actually, in this section and in Section 4, we will not work directly on M k
d or Pk

d .
One major reason is that in Section 4 we will consider degenerations outside the space of
endomorphisms of Pk. In order to obtain a non-empty open subset in the support of the
bifurcation measure on M k

d , we will provide a non-empty open subset Ω ⊂ Endkd in the

support of the current T
N kd
f,Crit.

At the beginning of this section, after some basic notations, we give in § 3.2 a long list
of assumptions that will be required in what follows. Then, in § 3.3 we state the main
results of the whole section, Theorem 3.3 and Theorem 3.4, and explain how, combined to
Corollary 2.2 or Corollary 2.5 and Theorem 4.1, they imply Theorem C. In § 3.4, we give
the strategy of the proof of these two theorems and the structure of the remaining part of
the section.

3.1. Notations. If a > 0 then Da is the disc of center 0 and radius a in C and we set
D := D1.

If A ⊂ C and B ⊂ Ck−1 are two connected open subsets then Γ ⊂ A × B is a vertical
graph if there exists a holomorphic function g : B → A with g(B) b A and such that
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Γ = {(g(y), y) ; y ∈ B}. One way to measure the verticality of a graph is to consider cone
fields. As we will only work on Ck where the tangent bundle is trivial, for ρ > 0 we say
that a vertical graph Γ as above is tangent to the cone field

Cρ :=

{
(u1, . . . , uk) ∈ Ck ; ρ|u1| ≤ max

2≤i≤k
|uk|

}
if the tangent bundle TΓ is contained in Γ × Cρ. If we write Γ = {(g(y), y) ; y ∈ B}
then this is equivalent to the fact that the partial derivatives of g are uniformly bounded
by 1/ρ. Observe that the more ρ is large, the more Γ is “vertical”. The case ρ = +∞
corresponds to vertical linear hyperspace. And we will say that a map f contracts the
cone field Cρ if there exists ρ′ > ρ such that the image of Cρ by the differential of f at
each point is contained in Cρ′ .

3.2. Assumptions. Let Ω be a non-empty open subset of Endkd or of Polykd such that
each f ∈ Ω has the following properties. Observe that most of the objects below (all
except Jk) are assumed to depend holomorphically on f ∈ Ω and the notations display
this dependency. For example, p : f 7→ p(f) is the holomorphic motion of the saddle point
given in Assumption 3 and Λ corresponds to the holomorphic motion of the hyperbolic
set Λ(f) from Assumption 2, i.e. x ∈ Λ is a function f 7→ x(f) given by this holomorphic
motion. Another observation is that the most important case is k = 2. When k ≥ 3, the
dynamics on the last k − 2 coordinates is not very important. However, the point iii) in
Assumption 10 prevents us from taking product maps.

(1) There exist two disjoint holomorphic discs U+, U− ⊂ C and two constants R > 2,
and ρ > 10 such that f contracts the cone field Cρ on U := U+ ∪ U− where

U± := DR × U± × Dk−2.

(2) There exist two disjoint holomorphic discs V+, V−,⊂ C such that, if we set

V+ := DR × V+ × Dk−2, V− := DR × V− × Dk−2 and V := V+ ∪ V−
then
• V ± ⊂ U±,
• f2 contracts the cone field Cρ on V,
• f2 is injective on V± and V ⊂ U ⊂ f2(V±).

Moreover,
Λ(f) := ∩n≥0f

−2n(V)

is a repelling hyperbolic set for f2, contained in Jk(f).
(3) f has a non-critical saddle fixed point p(f) ∈ D × U− × Dk−2 with one stable

direction and k − 1 unstable directions. We ask that its local unstable manifold
naturally extends to a vertical graph (denoted W u

p(f),loc) in D × V− × Dk−2 tan-

gent to Cρ. In what follows, W s
p(f),loc stands for a holomorphic disc in the stable

manifold where f is conjugated to a contraction. Finally, we assume that f is
C1-linearizable near p(f), with a linearization map depending continuously on f
in the C1-topology.

(4) Each vertical graph in D×V+×Dk−2 (resp. D×V−×Dk−2) tangent to Cρ intersects
Λ(f).

(5) The intersections between W u
p,loc and Λ are not persistent in Ω (i.e. if x(f) ∈

W u
p(f),loc ∩Λ(f) then there exists g ∈ Ω close to f such that the continuation x(g)

of x(f) in Λ(g) is not in W u
p(g),loc).
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(6) There exists a repelling 2-periodic point r(f) ∈ D×V−×Dk−2 such that the eigen-
values of Dr(f)f

2 are all simple with no resonance. In particular, f2 is linearizable

near r(f) and we assume that the domain of linearization contains U−.
(7) There exists n0 ≥ 1 such that fn0(Crit(f)) has a transverse intersection with

W s
p(f),loc \ {p(f)}.

(8) There exist K ∈ N and q̃(f) ∈W u
p(f),loc which is not a critical point for fK and such

that q(f) := fK(q̃(f)) 6= p(f) is a transverse homoclinic intersection in W s
p(f),loc.

(9) The exceptional set of f is disjoint from its small Julia set.

It remains a last assumption which is more technical. It will be used to initiate the
induction on the dimension. Let χp(f) (resp. χr(f)) be the eigenvalue of Dp(f)f (resp.

Dr(f)f
2) with the smallest modulus.

(10) For every non-empty open subset Ω′ ⊂ Ω, there exists f ∈ Ω′, m ∈ N and x(f) ∈
Λ(f) such that

i) fm(x(f)) = r(f),
ii) x(f) ∈W u

p(f),loc,

iii) Dx(f)f
m(Tx(f)W

u
p(f),loc) is a “generic” hyperplane for Dr(f)f

2, i.e. does not

contain any eigenvector of Dr(f)f
2,

iv) the subgroup 〈χp(f), χr(f)〉 of C∗ generated by χp(f) and χr(f) is dense,

From a non-technical point of view, the main ingredients to obtain that Ω ⊂ supp(T
N kd
f,Crit)

are Assumptions 2 to 4. They should be sufficient for the proof. Assumption 4 says that
Λ(f) satisfies a blender property and by Assumption 3, there exists a connection between
this blender Λ(f) and the saddle point p(f). If the critical set has a transverse intersection
with the stable manifold of p(f), this gives rise by the inclination lemma to infinite inter-
sections between the postcritical set and Λ(f). Very likely, all these intersections should
provide as many as possible independent bifurcations. Most of the other assumptions are
there in order to ensure several transversality properties which eventually give the exis-
tence of these independent bifurcations. In particular, a transverse intersection between
W s
p(f),loc and the postcritical set is given by Assumption 7. Observe moreover that this

assumption also implies easily that Ω contains no PCF maps (see the end of the proof of
Theorem C or [Le, Corollary 2.5] for a more precise result).

In the example we construct, all these assumptions are easy to check, except Assumption
10. This last assumption is the key technical point to prove that the support of the
bifurcation measure has non-empty interior. Establishing it on Ω takes a large part of
Section 4 where we need to consider degenerations outside Endkd.

In order to give more explanations on this assumption, the point iv) will be used to
ensure that the postcritical set of f can approximate any leaf of a foliation by hyper-
surfaces Ff , defined in a neighborhood of r(f) as the vertical fibration associated to the
linearization map. The point iii) implies in particular that the strong unstable hyperplane
Tr(f)W

uu
r(f) together with (Dx(f)f

m+i(Tx(f)W
u
p(f),loc))1≤i≤k−1 from a basis of hyperplanes.

Each of them is actually the tangent space of a dynamical foliation, Ff and (Gif )1≤i≤k−1

respectively, which thus define local coordinates near r(f). A key point will be that, under
suitable conditions labeled as (?) in what follows, these coordinates provided local conju-
gacies which turn out to extend in a neighborhood of the small Julia set. The results of
Section 2 ensure then that the conjugacies are generically global.
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Finally, notice that it would be easier to work with a fixed point in Assumption 6.
However, we were not able to obtain the open set Ω when d = 2 with this additional
constraint.

3.3. Statements. Here, we assume that Ω satisfies all the assumptions of § 3.2. The
purpose of Assumption 10 is to construct families with the following properties.

Definition 3.1. A subvariety M ⊂ Ω satisfies the condition (†) if

(1) M is connected,
(2) there exists x ∈ Λ and m ∈ N such that for all f ∈M , x(f) ∈W u

p(f),loc, f
m(x(f)) =

r(f) and Dx(f)f
m(Tx(f)W

u
p(f),loc) is a generic hyperplane for Dr(f)f

2,

(3) all the intersections points in W u
p(f) ∩ Λ(f) can be followed holomorphically,

(4) there exists f0 ∈M such that the subgroup 〈χr(f0), χp(f0)〉 is dense in C∗.

We also consider a stronger condition.

Definition 3.2. A subvariety M ⊂ Ω satisfies the condition (?) if it is simply connected,
verifies (†) and it is a stable family in the sense of Berteloot-Bianchi-Dupont.

The main purpose of this whole section is to show that these conditions combined to
the assumptions on Ω bring us to these two results.

Theorem 3.3. If M ⊂ Ω satisfies (†) then the functions f 7→ χp(f) and f 7→ χr(f) are
constant on M . In particular, any connected analytic subset M ′ ⊂M also satisfies (†).

Theorem 3.4. Let M ⊂ Ω be an analytic subset which satisfies (?). Let f0 ∈ M . Then
each n-periodic point x(f0) of Jk(f0) can be followed as a n-periodic point x(f) in Jk(f)
and the map f 7→ detDx(f)f

n is constant on M.

From this, if we anticipate the existence of the open set Ω, established in Theorem 4.1,
we can conclude the proof of Theorem C.

Proof of Theorem C. We only consider the case of M k
d . As we already said, the proof for

P2
d is exactly the same except that N k

d has to be replaced by 2
(
d+2
d

)
− 6. Observe that

we cannot conclude the proof on Pk
d when k ≥ 3 since Corollary 2.5 only holds on P2

d .

Let k ≥ 2 and d ≥ 2. Let Ω be the open subset of Endkd given by Theorem 4.1. Our goal

is to show that Ω ⊂ supp(T
N kd
f,Crit). To that end, we consider a non-empty connected open

subset Ω′ ⊂ Ω and we will prove that Ω′∩supp(T
N kd
f,Crit) is not empty. First, fix an arbitrary

element f ′ ∈ Ω′. If we apply Corollary 2.2 to the sequence (xn)n≥1 of all repelling periodic
points of f ′ in Jk(f

′) then there exists N ≥ 1 such that the corresponding multiplier map
ΛN is generically finite on a branch cover of M k

d . As the periodic points (xn)1≤n≤N are
repelling and in Jk(f

′), they can be followed holomorphically as repelling points in Jk(f)

in a small neighborhood of f ′ in Endkd. Since ΛN is generically finite, the fibers of the
corresponding map on a small open subset Ω′′ ⊂ Ω′ close to f ′ have codimension N k

d .
Hence, by Theorem 3.4, any analytic subset of Ω′′ satisfying (?) must have codimension
at least N k

d .

Now, by Assumption 10 there exists f0 ∈ Ω′′, m ∈ N and y1(f0) ∈ Λ(f0) such that

i) fm0 (y1(f0)) = r(f0),
ii) y1(f0) ∈W u

p(f0),loc,

iii) Dy1(f0)f
m
0 (Ty1(f0)W

u
p(f0),loc) is a generic hyperplane for Dr(f0)f

2
0 ,
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iv) the subgroup 〈χp(f0), χr(f0)〉 of C∗ is dense.

In particular, f0 belongs to

A1 := {f ∈ Ω′′ ; y1(f) ∈W u
p(f),loc},

which is a hypersurface by Assumption 5. A priori, A1 might be non-irreducible which
will give rise to mild technical difficulties in what follows. However, the parameters f in
A1 such that 〈χp(f), χr(f)〉 is dense in C∗ is itself dense in any irreducible component of A1

containing f0. Actually, if P (f) and R(f) denote logarithms of χp(f) and χr(f) and if we
write R(f) = t(f)P (f) + θ(f)2iπ with t(f), θ(f) ∈ R then this condition on the subgroup
is equivalent to the fact that 1, t(f) and θ(f) are independent over Q. This holds outside
a countable union of real analytic subsets of A1. Hence, we can take a smooth point f1 of
A1 such that this condition is satisfies and such that f1 is close enough to f0 to ensure that
the point iii) above also holds for f1. Let X1 be the irreducible component of A1 containing
f1 and let Ω1 ⊂ Ω′′ be a small open neighborhood of f1 such that A1 ∩Ω1 = X1 ∩Ω1 and
iii) is satisfied on Ω1.

The set W u
p(f) ∩ Λ(f1) is infinite and we use it to define a sequence (fi)1≤i≤N in Ω′′, a

decreasing sequence (Ωi)1≤i≤N of open subsets of Ω′′, and a decreasing sequence (Xi)1≤i≤N
of smooth irreducible analytic sets such that codim(Xi) = i and fi ∈ Xi. The construction
goes as follow. Assume that (fi)1≤i≤i0 , (Ωi)1≤i≤i0 and (Xi)1≤i≤i0 are defined. If all the
intersections points in W u

p(fi)
∩ Λ(fi) can be followed holomorphically on Xi0 then we set

N := i0 and the construction ends. Otherwise, there exist ni0+1 ≥ 0 and yi0+1 ∈ Λ

such that yi0+1(fi0) ∈ fni0+1

i0
(W u

p(fi0 ),loc) and this relation is not persistent on Xi0 . Here,

since f
ni0+1

i0
(W u

p(fi0 ),loc) is not a closed analytic set, we mean that there exists a small

neighborhood Ω̃i0+1 ⊂ Ωi0 of fi0 such that

Ai0+1 := {f ∈ Xi0 ∩ Ω̃i0+1 ; yi0+1(f) ∈ fni0+1(W u
p(f),loc)},

is a closed hypersurface in Xi0 ∩ Ω̃i0+1. As above, the set Ai0+1 might be non-irreducible
but we can choose a smooth point fi0+1 on it such that 〈χp(fi0+1), χr(fi0+1)〉 is dense in C∗

and such that the condition iii) holds for fi0+1. We then choose Xi0+1 to be the irreducible

component of Ai0+1 which contains fi0+1 and we take Ωi0+1 ⊂ Ω̃i0+1 to be a small enough
neighborhood of fi0+1 to have iii) on it and also Ai0+1 ∩ Ωi0+1 = Xi0+1 ∩ Ωi0+1. Observe
that we always have N ≤ N k

d and that XN satisfies (†).
Another observation is that XN corresponds to N independent intersections between

W u
p(f) and Λ(f) and, since the Jk-repelling periodic points are dense in Λ and since by

Assumption 7 some parts of the postcritical set approximate W u
p(f), a small perturbation

of XN gives rise to an analytic set which corresponds to N -properly Jk-prerepelling pa-
rameters. As this point is important, we give more details. Let (yi)1≤i≤N and (ni)1≤i≤N
be as above with the convention that n1 = 0. Moreover, during the construction, we used
open subsets (Ωi)i≤i≤N from which we define Ω̃ := ∩Ni=iΩi. We now consider the sets

WN := {(f, z1, . . . , zN ) ∈ Ω̃× (Pk)N ; zi ∈ fni(W u
p(f),loc) for 1 ≤ i ≤ N}

and

YN := {(f, z1, . . . , zN ) ∈ Ω̃× (Pk)N ; zi = yi(f) for 1 ≤ i ≤ N}.

What we have proved so far is that the projection of WN ∩ YN on Ω̃, which is equal to
XN ∩ Ω̃, has codimension N . Since the projection of YN on Ω̃ is a biholomorphism, we
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have that WN ∩ YN has pure dimension Nk
d −N , where Nk

d := dim(Endkd). On the other

hand, dim(YN ) = Nk
d and dim(WN ) = Nk

d + (k − 1)N so we have

dim(WN ∩ YN ) = dim(WN ) + dim(YN )− dim(Ω̃× (Pk)N ),

which gives the properness of the intersection. As the repelling periodic points are dense
in Λ, the set YN is approximated by sets Y ′N,n defined in the same way replacing each yi
by repelling periodic points y′i,n converging to yi. Moreover, the inclination lemma and

Assumption 7 also give that WN is approximated by sets W ′N,n defined as WN but using
a local branch of some iterate of the critical set instead of W u

p(f),loc. The persistence of

proper intersections (see e.g. [C, §12.3]) gives that W ′N,n ∩ Y ′N,n is proper when n is large

enough i.e. W ′N,n ∩ Y ′N,n corresponds to N -properly Jk-prerepelling points in Ω̃× (Pk)N .

Now, we continue the construction and we define by induction (fi)N+1≤i≤N ′ , (Ωi)N+1≤i≤N ′
and (Xi)N+1≤i≤N ′ in the following way. Assume the construction done for N ≤ i ≤ i0.
If the family defined by Xi0 is stable then we set N ′ := i0. Otherwise, there exists a
non-persistent Misiurewicz relation on Xi0 and we define Ai0+1 to be the analytic hyper-
surface of Xi0 where this relation is persistent. Then, we choose a smooth point fi0+1 on
Ai0+1 and a small neighborhood Ωi0+1 ⊂ Ωi0 such that Xi0+1 := Ωi0+1 ∩Ai0+1 is smooth,
connected and simply connected.

As above, at the end we have

• codim(XN ′) = N ′ ≤ N k
d ,

• all the Misiurewicz relations in XN ′ are persistent, i.e. this family is stable,
• by Theorem 3.3 XN ′ satisfies (†) and thus (?).

The construction of Ω′′ and Theorem 3.4 then ensure that N ′ ≥ N k
d and thus N ′ = N k

d .
On the other hand, exactly as above, the points of XN ′ are approximated by N ′-properly
Jk-prerepelling parameters in Endkd × (Pk)N . By Proposition 1.11, XN ′ is contained in

the support of the current T
N kd
f,Crit. Moreover, the bifurcation measure µf,Crit of the moduli

space M k
d satisfies Π∗(µf,Crit) = T

N kd
fCrit, where Π : Endkd →M k

d is the natural projection,

see [BB1]. This implies Ω̂ := Π(Ω′′) ⊂ supp(µf,Crit) and Ω̂ is open since Π is an open map.
Finally, notice that Assumption 7 easily gives that the open set Ω obtained by Theorem

4.1 doesn’t possess PCF maps. More precisely, let f ∈ Ω. The inclination lemma applied
to the piece of fn0(Critf ) transverse to W s

p(f),loc given by Assumption 7 implies that

the postcritical set contains infinitely many disjoint (local) hypersurfaces converging to
W u
p(f),loc. Hence, the postcritical set cannot be algebraic. �

Remark 3.5. For the absence of PCF maps in Ω we could have use a result of Le [Le,
Corollary 2.5] saying that a PCF map of Pk cannot have non-critical saddle periodic point.

3.4. Sketch of the proofs of Theorems 3.3 and 3.4. Let M ⊂ Ω be a subvariety
satisfying (?). The assumptions of § 3.2 are used in the following way.

(1) As the family is stable, by [Bia, Theorem C] there exists an equilibrium lamination
L for the family (f)f∈M (see Definition 3.19).

(2) Points (2) and (3) in Definition 3.1, which come from Assumption 10, ensure that
r(f) ∈W u

p(f) persistently in the family.

(3) Since the postcritical set intersects transversely W s
p(f) (Assumption 7), the inclina-

tion lemma and the assumption 〈χp(f0), χr(f0)〉 = C∗ implies that the postcritical
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set of f0 can approximate any leaf of a foliation by hypersurfaces Ff0 , defined in a
neighborhood of r(f0) as the vertical fibration associated to the linearization map.

(4) The previous point, the stability of (f)f∈M and the blender property from As-

sumption 4 imply, in a first time, a persistent relation χr(f) = ζχ−ωp(f) on M which

actually gives, combined to Assumption 8, that both these functions are constant.
(5) The genericity part of (2) in Definition 3.1 allows us to construct k−1 other local

foliations, G1
f , . . . ,G

k−1
f whose leaves are also approximated by the postcritical set

and such that (Ff ,G1
f , . . . ,G

k−1
f ) provides local coordinates near r(f).

(6) The fact that the equilibrium lamination L is acritical implies that if γ ∈ L then

the coordinates of γ(f) with respect to (Ff ,G1
f , . . . ,G

k−1
f ) are independent of f.

(7) Since {γ(f) | γ ∈ L} is not contained in a proper analytic set, these local coordi-
nates respecting L give a local conjugacy near r(f).

(8) This local conjugacy extends to a neighborhood of the small Julia set, forcing the
multipliers to be constant in the family.

Now, in § 3.5 we set notations and basic results for the family (f)f∈Ω. § 3.6 and § 3.7 are
devoted to obtain the points 3 and 4 which actually imply Theorem 3.3. The conjugacy,
which corresponds to points 5 to 8, is constructed in § 3.8.

3.5. Semi-local dynamics. First, we fix an arbitrary f0 ∈ Ω. As Theorem 3.4 is es-
sentially a local result, when necessary we will replace Ω by a smaller connected open
neighborhood of f0 in Ω.

Since the fibration of Ck by vertical hypersurfaces will play an important role in what
follows, we denote by π : Ck → C the first projection.

Let r(f) be the repelling 2-periodic point given by Assumption 6. We denote by χr(f) the

eigenvalue of Dr(f)f
2 with the smallest modulus. Since the eigenvalues of Dr(f)f

2 have no

resonance, by [BR] there exist a holomorphic family of holomorphic maps (φf )f∈Ω from Ck

to Pk and a holomorphic family (L̃f )f∈Ω of linear self-maps of Ck−1 such that φf (0) = r(f)
and

φ−1
f ◦ f

2 ◦ φf (x, y) = (χr(f)x, L̃f (y)) =: Lf (x, y)

for every (x, y) ∈ C×Ck−1 near 0. In particular, the vertical linear fibration of Ck defined
by π is sent on the strong unstable fibration of r(f) and φf |π−1(0) gives a parametrization
of the strongly unstable manifold of r(f). Moreover, Assumption 6 implies that there
exists a neighborhood A of 0 in Ck such that φf0 is injective on A with U− ⊂ φf0(A). The

cone condition in Assumption 2 ensures that there is an open set Ã ⊂ Ck−1 such that
{0} × Ã ⊂ A and φf0({0} × Ã) is a vertical graph which goes through D × V− × Dk−2.
As these properties are stable under small perturbations, there exists ν > 0 such that,
possibly by reducing Ω and slightly A, Ã, for each f ∈ Ω

• φf is injective on A with U− ⊂ φf (A),

• for all c ∈ Dν , {c} × Ã ⊂ A and φf ({c} × Ã) is a vertical graph passing through

D× V− × Dk−2.

We denote by δf : φf (A)→ A the associated inverse map. Observe that the second point

above combined to Assumption 4 implies that each φf ({c} × Ã) intersects Λ(f). In what
follows, it will be convenient to normalize the family (φf )f∈Ω in the following way. Let

consider a family (uf )f∈Ω of self-maps of C× Ck−1 of the form uf (x, y) = (afx, y) where
af ∈ C∗ depends holomorphically on f and is chosen such that

• |af | < ν in order to have uf (D× Ã) ⊂ Dν × Ã,
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• there exists r′ ∈ Λ close enough to r such that for all f in Ω, π◦u−1
f ◦δf (r′(f)) ≡ 1.

Hence, if we replace φf by φf◦uf then ν can be supposed to be 1 and we have π◦δf (r′(f)) ≡
1. This normalization will only appear in Corollary 3.18 which is, however, a key ingredient
in § 3.8.

We then set B := D × Ã and Df := φf (B). The later possesses a natural foliation Ff
where Ff (c) = φf ({c}×Ã) for c ∈ D. As we have already seen, each leaf is a vertical graph
which intersects Λ(f). In particular, Ff (0) corresponds to the local strongly unstable
manifold W uu

r(f),loc of r(f). We also denote by W cu
r(f),loc = φf (D× {0}), which corresponds

to the local weak unstable manifold of r(f).

Figure 1. Summary of the notations. The whole picture is contained in
U−. In the example we obtain in Section 4, the hyperbolic set Λ(f) is a
Cantor set but it intersects any sufficiently vertical graph in V−.

Finally, we also set some notations about the dynamics near the saddle fixed point p(f)
given by Assumption 3. Let denote by χp(f) the eigenvalue of Dp(f)f with the smallest
modulus. Using holomorphic conjugacies separately on the stable/unstable directions, we
first choose holomorphic local coordinates vf : Vf → Dk on a neighborhood Vf of p(f) such
that

• v−1
f (D × {0}) is contained in the stable manifold of p(f) and vf ◦ f ◦ v−1

f (x, 0) =

(χp(f)x, 0),

• v−1
f ({0} × Dk−1) is contained in the unstable manifold of p(f) and, when it is

defined, vf ◦ f ◦ v−1
f (0, y) = (0, Af (y)) where Af is an expanding diagonal matrix

of size k − 1.
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In what follows, the local stable manifold of p(f) will be defined as W s
p(f),loc := v−1

f (D ×
{0}). For the local unstable manifold W u

p(f),loc of p(f), we take the vertical graph in

D× V− × Dk−2 given by Assumption 3.
Moreover, this assumption also implies that there exists a C1-family (θf )f∈M of local C1-

diffeomorphisms such that θf◦f◦θ−1
f is the linear map Kf (x, y) = (χp(f)x,Af (y)). Observe

that we can assume the domain of definition of θf contains Vf and that D0(θf ◦ v−1
f ) = id.

Consequences of the inclination lemma. We will extensively use the inclination
lemma on families of hypersurfaces transverse to W s

p(f),loc parametrized by a subset M of

Ω. We will gradually strengthen the assumptions on M until reaching (†) in § 3.7 and (?)
in § 3.8. For now, we just assume that M is a connected analytic subset of Ω.

Definition 3.6. We say that Γ = (Γ(f))f∈M is a family of polydiscs intersecting trans-
versely W s

p(f),loc at b(f) if

• each Γ(f) is biholomorphic to Dk−1 and f 7→ Γ(f) is holomorphic,
• each Γ(f) intersects W s

p(f),loc in a unique point and this intersection is transverse,

• the image by vf of this intersection point with Γ(f) is (b(f), 0) ∈ D× {0}.

From now on, we also assume there exists x ∈ Λ and m ∈ N such that for all f ∈ M ,
x(f) ∈W u

p(f),loc, f
m(x(f)) = r(f) and Dx(f)f

m(Tx(f)W
u
p(f),loc) is a generic hyperplane for

Dr(f)f
2. By increasing m if necessary, we can assume that fm sends biholomorphically a

neighborhood of x(f) in W u
p(f),loc to a vertical graph Wm(f) in Df , C1-close to W uu

r(f),loc

and thus tangent to Cρ.
Let Γ be a family of polydiscs intersecting transversely W s

p(f),loc. By the inclination

lemma, there exists k0 ≥ 0 such that for all f ∈ M and all k ≥ k0, fk(Γ(f)) contains a
subset which is C1-close to W u

p(f),loc. In particular, fk+m(Γ(f)) contains a subset Γk(f)

which is a vertical graph in Df , tangent to Cρ and C1-close to Wm(f). From this, using
again the inclination lemma but near r(f), we can construct families of vertical graphs
which turns out to be key objects to prove that (†) implies a persistent resonance between
χp(f) and χr(f).

Definition 3.7. Let Γ and k0 be as above. Let f ∈ M , l0 ≥ 0 and k ≥ k0. Let ck(f)
denote the point of intersection between Γk(f) and W cu

r(f),loc. If for all 0 ≤ l ≤ l0, |π ◦
δf (f2l(ck(f)))| < 1/2 then we define Γk,l(f) by induction, setting

• Γk,l(f) is the vertical graph in f2(Γk,l−1) ∩Df which contains f2l(ck(f)).

In this situation, we say that Γk,l(f) is well-defined for all l ≤ l0.

Remark 3.8. (1) Observe that the injectivity in Assumption 2 implies that there is no
ambiguity in the definition of Γk,l(f).
(2) A priori, it could happen that Γk,l(f) is well defined for some f = f1 and not for

f = f2, even if |π ◦ δf1(f2l
1 (ck(f1)))| is much smaller than 1/2. However, we will see in

Lemma 3.12 that under condition (†), this doesn’t happen and thus (Γk,l(f))f∈M define
holomorphic families of vertical graphs.

Since Dx(f)f
m(Tx(f)W

u
p(f),loc) is a generic hyperplane for Dr(f)f

2, in particular W cu
r(f),loc

is transverse to Wm(f). Hence, by the inclination lemma there exist an integer a > m and
a holomorphic injective map hf : D → Vf (where Vf is the neighborhood of p(f) defined
above) such that
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• ∆f := hf (D) is transverse to W u
p(f),loc,

• ∆f is a graph above W s
p(f),loc, more precisely the projection on the first coordinate

of vf ◦ hf is the identity,
• fa|∆f

is injective and fa(∆f ) is a neighborhood of r(f) in W cu
r(f),loc.

We define Hf : D→ D by Hf = π ◦ δf ◦ fa ◦ hf . Observe that Hf (0) = 0 and is injective.
Hence, there exists α̃(f) 6= 0, which depends holomorphically on f , such that

Hf (s) = α̃(f)s+ o(s),

where o(s) is uniform in f .

Remark 3.9. Observe that a similar construction can be done where W cu
r(f),loc is replaced

by a holomorphic disc Σf transverse to fn(W u
p(f),loc) as long as the point in W u

p(f),loc sent

to Σf ∩ fn(W u
p(f),loc) is not critical for fn. We will use such construction in Proposition

3.17 for the homoclinic intersection given by Assumption 8, i.e. Σf will be an open subset
of W s

p(f),loc.

Figure 2. Definition of Γk,l(f) where x(f) ∈ W u
p(f),loc is a preimage of

r(f). The integers m and a are constant but k and l can be large. The
next two lemmas show that ck(f) and ck,l(f) are essentially equal to χp(f)k

and χp(f)kχr(f)l respectively in the coordinates on W cu
r(f),loc given by φf .

The two following lemmas can be seen as consequences of the inclination lemma or
linearization results. Their purpose is to show that the vertical graphs Γk,l(f) are close to
leafs Ff (ck,l(f)) of the strong unstable foliation of r(f), where ck,l(f) is essentially equal

to χp(f)kχr(f)l. The first lemma focus on Γk(f). It should be possible to prove it using
distorsion estimates. We instead use C1-linearization and this part of Assumption 3 only
appears here.



32 THOMAS GAUTHIER, JOHAN TAFLIN, AND GABRIEL VIGNY

Lemma 3.10. There exists a holomorphic function β : M → C∗ with the following prop-
erty. Let (Γ(f))f∈M be a family of polydiscs intersecting transversely W s

p(f),loc at b(f).

For each n ≥ 0 large enough there exists a holomorphic function sn : M → C such that for
each f ∈M

• ∆f ∩ fn(Γ(f)) = hf (sn(f)),
• sn(f) = β(f)b(f)χnp(f) + o(χnp(f)).

In other words, for k ≥ 0 large enough, Γk(f) ∩W cu
r(f),loc ∈ Ff (Hf (sk+m−a(f))) with

Hf (sk+m−a(f)) = α(f)b(f)χkp(f) + uk(f),

with α(f) := χm−ap(f) α̃(f)β(f) and such that uk(f)/χkp(f) converges to 0, locally uniformly

on M.

Proof. As θf is well defined on Vf , we can define a C1-germ of (C, 0) by

Ff (s) := π ◦ vf ◦ θ−1
f ◦ π̃0 ◦ θf ◦ hf (s),

where π : Ck → C is the first projection as above and π̃0 : Ck → Ck is defined by π̃0(x, y) =
(x, 0). The key point in the proof is that the differential of Ff at 0 is C-linear. The maps hf
and π◦vf are holomorphic so we focus on θ−1

f ◦π̃0◦θf which corresponds to the projection in

the unstable direction given by the linearization θf . This maps is a priori not holomorphic
but there exists a sequence (Un)n≥0 of open neighborhoods of W u

p(f),loc ∩ Vf such that

πn := fn ◦ v−1
f ◦ π̃0 ◦ vf ◦ f−n

is defined on Un. We claim that, for z ∈W u
p(f),loc ∩ Vf , we have

πn(z) = 0 = θ−1
f ◦ π̃0 ◦ θf (z) and Dzπn −−−→

n→∞
Dz(θ

−1
f ◦ π̃0 ◦ θf ).

Indeed, the equality is obvious and for the convergence, if we set ψ := θf ◦ v−1
f and

F := vf ◦ f ◦ v−1
f then

θf ◦ πn ◦ θ−1
f = ψ ◦ Fn ◦ π̃0 ◦ F−n ◦ ψ−1 = Kn

f ◦ ψ ◦ π̃0 ◦ ψ−1 ◦K−nf .

It follows that, if y satisfies θf (z) = (0, y) then, using that D0ψ = id and writing
D(0,A−nf (y))ψ

−1 = id + En, we have

D(0,y)(θf ◦ πn ◦ θ−1
f ) = Kn

f ◦ π̃0 ◦ (id +En) ◦K−nf = Kn
f ◦ π̃0 ◦K−nf +Kn

f ◦ π̃0 ◦En ◦K−nf .

Kf commutes with π̃0 thus the first term is equal to π̃0. The second one converges to 0

since ‖K−nf ‖ ' χ
−n
p(f), ‖K

n
f ◦ π̃0‖ ' χnp(f) and ‖En‖ converges to 0.

This gives that θ−1
f ◦ π̃0 ◦θf is C-differentiable on W u

p(f),loc and so at hf (0). Hence, there

exists γ(f) ∈ C, which is non-zero since ∆f and W s
p(f),loc are transverse to W u

p(f),loc, such

that Ff (s) = γ(f)s+ o(s).
On the other hand, let (Γ(f))f∈M be a family of polydiscs intersecting transversely

W s
p(f),loc at b(f). For each n ∈ N large enough, there exists sn(f) ∈ D which depends holo-

morphically on f ∈M and such that hf (sn(f)) ∈ fn(Γ(f))∩∆f . The set Γ̃(f) := θf (Γ(f))

is locally a vertical graph {(gf (y), y)} where gf : (Ck−1, 0) → C is a C1-germ. Its image

Γ̃n(f) by Kn
f is given locally by {(gnf (y), y)} where gnf (y) = χnp(f)gf (A−nf (y)). Hence, since

A−nf contracts at an exponential speed, we have gnf (y) = χnp(f)gf (0) + o(χnp(f)) where the
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error term is uniform in f . Moreover, there exists yn(f) such that θ−1
f (gnf (yn(f)), yn(f)) =

hf (sn(f)). Therefore, the definitions of vf and Kf give

Ff (sn(f)) = π ◦ vf ◦ θ−1
f ◦ π̃0(gnf (yn(f)), yn(f))) = π ◦ vf ◦ θ−1

f (gnf (yn(f)), 0)

= π ◦ vf ◦ θ−1
f (χnp(f)gf (0), 0) + o(χnp(f)) = π ◦ vf ◦ θ−1

f (Kn
f (θf (v−1

f (b(f), 0)))) + o(χnp(f))

= π ◦ vf ◦ fn(v−1
f (b(f), 0)))) + o(χnp(f)) = χnp(f)b(f) + o(χnp(f)).

Hence, sn(f) = β(f)b(f)χnp(f) +o(χnp(f)) where β(f) := γ(f)−1. To conclude, the sequence

sn(f)/(b(f)χnp(f)) depends holomorphically on f and this sequence converge locally uni-

formly to β(f) which is then also holomorphic. �

The next lemma can be seen as a consequence of the inclination lemma in presence of
a dominated splitting. It can be easily proved using the linearization near r(f) and the
proof is left to the reader.

Lemma 3.11. Let (Γ(f))f∈M be a family of polydiscs intersecting transversely W s
p(f),loc

at b(f). There exists a sequence (εn)n≥0 converging to 0 with the following property. If
f ∈M , k ≥ n and l ≥ n are such that Γk,l(f) is well-defined then

d(Γk,l(f),Ff (ck,l(f))) ≤ εn,

where ck,l(f) = α(f)b(f)χkp(f)χ
l
r(f).

3.6. Strong relations between the multipliers. From now on, we consider a sub-
variety M ⊂ Ω which satisfies (1), (2) and (3) in Definition 3.1. Once again, we fix
f0 ∈M.

Lemma 3.12. Let (kn)n≥0 and (ln)n≥0 be two increasing sequences such that (χknp(f0)χ
ln
r(f0))n≥0

is a sequence in D which converges. Then {f 7→ χknp(f)χ
ln
r(f)}n≥0 is a normal family in a

neighborhood M0 ⊂M of f0.

Proof. A preliminary observation is that since Λ moves with respect to a holomorphic
motion, the family of functions on M , {f → x(f)}x∈Λ is a normal family. In particular,
there exists a neighborhood M0 ⊂M of f0 such that if x(f0) is in Df0 with |π◦δf0(x(f0))| <
1
20 then for all f ∈M0, x(f) ∈ Df with |π ◦ δf (x(f))| < 1

10 .
By Assumption 8, there exists a family of polydiscs Γ intersecting transversely W s

p(f),loc

at some b(f) 6= 0 and such that Γ(f) ⊂W u
p(f). By exchanging each Γ(f) by an appropriate

subset of fN (Γ(f)), we can assume that, for all f ∈M0, |α(f)b(f)| < 1
20 .

By Lemma 3.10, the first coordinate (with respect to δf0) of ckn(f0) := Γkn(f0) ∩
W cu
r(f0),loc is Hf0(skn+m−a(f0)) = α(f0)b(f0)χknp(f0) + ukn(f0). Hence,

π ◦ δf0(f2l
0 (ckn(f0))) = χlr(f0)

(
α(f0)b(f0)χknp(f0) + ukn(f0)

)
.

Since (χknp(f0)χ
ln
r(f0))n≥0 converges to some χ(f0) ∈ D and since ukn(f0)/χknp(f0) converges to

0, the sets Γkn,ln(f0) are well-defined for n ≥ n0 for some n0 large enough.
By Assumption 4, for n ≥ n0 there exists a point xn(f0) ∈ Λ(f0) which belongs to

Γkn,ln(f0). On the other hand, by Lemma 3.11, the sequence of analytic sets (Γkn,ln(f0))n≥n0

converges to Ff0(α(f0)b(f0)χ(f0)). Since |α(f0)b(f0)| < 1
20 , this implies that |π◦δf0(xn(f0))| <

1
20 for n ≥ n1 large enough and thus |π ◦ δf (xn(f))| < 1

10 for all f ∈M0.
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As M satisfies (3) in Definition 3.1, the persistence of proper intersections (see e.g. [C,
§12.3]) implies that the continuation xn(f) of xn(f0) in Λ(f) also lies on Γkn,ln(f), which
is thus well-defined. As observe above, all these functions {f 7→ xn(f)}n≥n1 form a normal
family. Hence, the same holds for the family{

f 7→
π ◦ δf (xn(f))

b(f)α(f)

}
n≥n1

.

The result follows since, by Lemma 3.10 and Lemma 3.11, these functions are, locally on
M0, arbitrarily close to {f 7→ χknp(f)χ

ln
r(f)}n≥0. �

Proposition 3.13. There exists ζ ∈ S1 and ω ∈ R∗+ such that for all f ∈M

χr(f) = ζχ−ωp(f).

Proof. Let (kn)n≥0 and (ln)n≥0 be two sequences as in Lemma 3.12 that we choose in order
to have

χ(f0) := lim
n→∞

χknp(f0)χ
ln
r(f0)

is non-zero. By analytic continuation, it is sufficient to prove the result in a neighborhood
of f0. Let M0 be the neighborhood of f0 obtained by Lemma 3.12 where the family
{f 7→ χknp(f)χ

ln
r(f)}n≥0 is normal. Let χ : M0 → C be a limit value and we can assume, up

to take a subsequence, that for each f ∈M0,

(2) χknp(f)χ
ln
r(f) → χ(f).

Let M1 be a simply connected neighborhood of f0 where χ doesn’t vanish. Let P (f) (resp.
R(f), resp. Q(f)) be a logarithm of χp(f) (resp. χr(f), resp. χ(f)) on M1. By (2), the
real parts of these functions verify on M1

lim
n→∞

knReP (f) + lnReR(f) = ReQ(f)

and thus

lim
n→∞

kn
ln

ReP (f) + ReR(f) = 0.

Hence, if ω denotes a limit value of (kn/ln)n≥0 then ReR(f) = −ωReP (f). This implies
that there exists t ∈ R such that R = −ωP + it and so χr(f) = ζχ−ωp(f) with ζ := eit. �

This gives precise information on the possible limit values for families of the form (Γk,l)
obtained by Definition 3.7.

Lemma 3.14. There exist t0 > 0 and a neighborhood M0 ⊂ M of f0 with the following
property. Let (kn)n≥0 and (ln)n≥0 be two increasing sequences such that (χknp(f0)χ

ln
r(f0))n≥0

converges to ξχtp(f0) for some t ∈ [t0,+∞[ and ξ ∈ S1. Let Γ be a family of polydiscs

cutting W s
p(f),loc transversely at b(f). Let (Γk,l) the associated sequence of families of

polydiscs obtained by Definition 3.7. Then, there exists n0 ∈ N such that for f ∈ M0,
(Γkn,ln(f))n≥n0 is well defined and converges to F(α(f)b(f)ξχtp(f)), uniformly on M0.

Proof. Let t0 > 0 be such that |α(f0)χt0p(f0)| <
1
20 and let M0 ⊂ M be a relatively com-

pact neighborhood of M such that |α(f)χt0p(f)| <
1
10 for all f ∈ M0. By Proposition

3.13, there exist ω ∈ R and ζ in S1 such that for all f ∈ M , χr(f) = ζχ−ωp(f). Hence,

limn→∞ χ
kn
p(f0)χ

ln
r(f0) = ξχtp(f0) implies that (kn − ωln)n≥0 and (ζ ln)n≥0 converge to t and ξ
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respectively. Therefore, for all f ∈M , (χknp(f)χ
ln
r(f))n≥0 converges to ξχtp(f). As we assumed

that t ≥ t0, we thus have that |α(f)b(f)χknp(f)χ
ln
r(f)| <

1
5 for all f ∈ M0 and n ≥ n1 where

n1 ∈ N is large enough.
By Lemma 3.10, for all f ∈ M , Γkn(f) passes through W cu

r(f),loc ∩ F(Hf (skn+m−a(f))),

where Hf (skn+m−a(f)) = α(f)b(f)χknp(f) + ukn(f) with ukn(f)/χknp(f) converging to 0, uni-

formly on f ∈ M0. Thus, for n0 ≥ n1 large enough we have |ukn(f)χlnr(f)| <
1
5 on M0 for

all n ≥ n0. Hence, |χlnr(f)Hf (skn+m−a(f))| < 1
2 and (Γkn,ln(f))n≥n0 are well-defined. On

the other hand, the convergence above implies that

lim
n→∞

χlnr(f)Hf (skn+m−a(f)) = α(f)b(f)ξχtp(f).

This combined to Lemma 3.11 give that (Γkn,ln(f))n≥n0 converges to F(α(f)b(f)ξχtp(f)).

�

3.7. Stereotyped holomorphic motion and constant multipliers. From now on, we
assume that M ⊂ Ω satisfies condition (†) and we choose an element f0 ∈ M such that

〈χp(f0), χr(f0)〉 = C∗.

Remark 3.15. Observe that this last point above is equivalent to the fact that t, ω and
1 are independent over Q where χr(f0) = e2iπtχ−ωp(f0). Hence, Proposition 3.13 implies that

〈χp(f), χr(f)〉 = C∗ for all f ∈M . This actually gives the last point in Theorem 3.3.

We prove now that this additional assumption on M constrains the holomorphic motion
of Λ(f) to be very special.

Proposition 3.16. Let (Γ(f))f∈M be a family of polydiscs cutting W s
p(f),loc transversely

at b(f) such that Γ(f) ⊂ W u
p(f). Pick x(f0) ∈ Λ(f0) ∩ Df0 such that π(δf0(x(f0))) =

α(f0)b(f0)ξχtp(f0) for some t ∈ R and ξ ∈ S1. Then, for all f ∈ M , the holomorphic

continuation x(f) in Λ(f) of x(f0) is in Df and satisfies π(δf (x(f))) = b(f)α(f)ξχtp(f).

Proof. Let t0 > 0 and M0 ⊂ M be as in Lemma 3.14. Let x(f0) ∈ Λ(f0) ∩ Df0 . By
exchanging x(f0) by a preimage, we can assume that π(δf0(x(f0))) = α(f0)b(f0)ξχtp(f0)

with t > t0. Since 〈χp(f0), χr(f0)〉 = C∗, there exist (kn)n≥0 and (ln)n≥0 two increas-

ing sequences such that (χknp(f0)χ
ln
r(f0))n≥0 converges to ξχtp(f0). Let Γkn,ln be the fami-

lies of analytic sets associated to Γ(f) ⊂ W u
p(f). Lemma 3.14 implies that (Γkn,ln(f))≥0

converges to F(α(f)b(f)ξχtp(f)), uniformly on M0. Hence, if x(f) intersects properly

Ff (α(f)b(f)ξχtp(f)) then x(f) intersects properly Γkn,ln(f) for n ≥ 0 large enough. This

contradicts condition (†) and thus x(f) ∈ Ff (α(f)b(f)ξχtp(f)) for all f ∈M0, i.e. π(δf (x(f))) =

b(f)α(f)ξχtp(f). By analytic continuation, this equality holds on the whole space M. �

Using several homoclinic intersections, we obtain the following strong restriction on χp
which, combined to Proposition 3.13, implies Theorem 3.3

Proposition 3.17. The function χp is constant on M.

Proof. Assume by contradiction that χp is not constant. This implies the existence of a
small arc γ : [0, 1]→M such that χp(γ(s)) = reisa for all s ∈ [0, 1], where r ∈ C∗ and a > 0
are two constants. In particular, for n ∈ N large, s 7→ χnp(γ(s)) spines about n/a times
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around 0 on a small circle. We will use this fast variation in the argument together with
Proposition 3.16 in order to obtain a contradiction.

By Assumption 8, there exist K ≥ 1 and q̃(f) ∈ W u
p(f),loc which is not a critical point

for fK and such that q(f) := fK(q̃(f)) 6= p(f) is a transverse homoclinic intersection in
W s
p(f),loc. We denote by b0(f) the point in D such that vf (q(f), 0) = b0(f) and we have

b0(f) 6= 0. As the homoclinic intersection is transverse, there exists a family of polydisc
(Γ(f))f∈M intersecting transversely W s

p(f),loc at b0(f) such that Γ(f) ⊂ W u
p(f). Moreover,

as observe in Remark 3.9, since q̃(f) is not critical for fK , there exists a holomorphic
injective map gf : D→ Vf such that

• ∆′f := gf (D) is transverse to W u
p(f),loc,

• ∆′f is a graph above W s
p(f),loc, i.e. the projection on the first coordinate of vf ◦ gf

is the identity,
• fK|∆′f is injective and fK(∆′f ) is a neighborhood of q(f) in W s

p(f),loc.

We also define Gf : D→ D by Gf = π◦vf ◦fK ◦gf where π : Ck → C is the first projection.

Observe that Gf is injective with Gf (0) = b0(f). Hence, there exists β̃(f) 6= 0, which
depends holomorphically on f , such that

Gf (s) = b0(f) + β̃(f)s+ o(s),

where o(s) is uniform in f . Exactly like in Lemma 3.10, for n ≥ K large enough, there
exist holomorphic functions s′n and δn such that

• gf (s′n(f)) ∈ fn−K(Γ(f)),

• s′n(f) = b0(f)χn−Kp(f) + o(χnp(f)),

• Gf (s′n(f)) = b0(f)(1 + β(f)χnp(f) + δn(f)), where δn(f) = o(χnp(f)) and β(f) :=

β̃(f)χ−Kp(f).

We set bn(f) := Gf (s′n(f)) which corresponds to a transverse homoclinic intersection
fn(Γ(f)) ∩W s

p(f),loc very close to b0(f).

Now, if we apply Proposition 3.16 first to b(f) = bn(f) with ξ = 1, t = 0 and a second
time to b(f) = b0(f), where ξn and tn are chosen such that ξnχ

tn
p(f0) = 1 + χnp(f0)β(f0) +

δn(f0), then we obtain for all f ∈M
(b0(f) + b0(f)χnp(f)β(f) + b0(f)δn(f))α(f) = b0(f)α(f)ξnχ

tn
p(f),

and thus

(3) 1 + χnp(f)β(f) + δn(f) = ξnχ
tn
p(f).

Observe that ξn converges to 1 and tn converges to 0 since 1 + χnp(f0)β(f0) + δn(f0) goes

to 1.
We choose an arc γ : [0, 1] → M as above, small enough to insure that the argument

of s 7→ β(γ(s)) is almost constant and such that χp(γ(s)) = reisa for all s ∈ [0, 1], where
r ∈ C∗ and a > 0 are two constants. In particular, when n is large then s 7→ χnp(γ(s))β(γ(s))

spines about n/a times around 0 on a small circle.
On the other hand, let P : Ω→ C be a logarithm of χp on Ω and let θn ∈ R converging

to 0 such that ξn = eiθn . Then ξnχ
tn
p(f) − 1 = (tnP (f) + iθn) + o(tnP (f) + iθn) whose

argument is essentially equal to the one of tnP (f) + iθn which is never purely imaginary
since |χp(f)| < 1 on Ω. Hence, the equality (3) cannot hold for n ≥ 1 large enough. This
gives the desired contradiction. �
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The combination of Proposition 3.17 with Proposition 3.16 easily says that the first
coordinate (with respect to φf ) of the holomorphic motion of points in Λ(f) ∩Df is not
only holomorphic in f ∈ M but also in the starting point. Actually, in the coordinates
given by φf , this dependency is linear and our choice of normalization of φf implies that
it is constant.

Corollary 3.18. If x(f0) ∈ Λ(f0) ∩Df then for all f ∈M

π(δf (x(f))) = π(δf0(x(f0))).

Proof. As in the proof of Proposition 3.17, let q(f) be the homoclinic intersection and
b0(f) the corresponding point in D. By Proposition 3.17 and Proposition 3.16, if

π(δf0(x(f0))) = α(f0)b0(f0)s,

for some s ∈ C, then

π(δf (x(f))) = α(f)b0(f)s.

In other words

π(δf (x(f))) = π(δf0(x(f0)))
b0(f)α(f)

b0(f0)α(f0)
.

On the other hand, in order to normalize φf we had chosen r′ ∈ Λ in § 3.5 close enough
to r such that

π(δf (r′(f))) = π(δf0(r′(f0))).

Hence, b0(f)α(f)
b0(f0)α(f0) is constantly equal to 1. �

3.8. Construction of the conjugacy. We will first construct local conjugacies between
elements of M and then extend them in a neighborhood of the small Julia set Jk. This
problematic is classical in one variable complex dynamics. See in particular [BE1] where
Buff-Epstein obtained at the end a global conjugacies outside the exceptional sets. In our
context we have much less information on the dynamics outside the small Julia set and,
even if the counterpart of [BE1] probably holds in higher dimension, our final argument
relies strongly on the fact that we work with a family.

Let M ⊂ Ω be a subvariety which satisfies (?). The difference with condition (†) is
that (f)f∈M is supposed to be simply connected and stable in the sense of Berteloot-
Bianchi-Dupont [BBD]. Observe that in [BBD, Theorem 1.1], the parameter space has

to be an open subset of Endkd. However, this restriction has been overcome by Bianchi in
the broader setting of polynomial-like maps with large topological degree [Bia]. The key
notion in [BBD, Bia] for what follows is the equilibrium lamination. To introduce it, we
first consider the set

J :=
{
γ : M → Pk γ is holomorphic and γ(f) ∈ Jk(f) for every f ∈M

}
.

The family (f)f∈M induces naturally a self-map F of J by setting F (γ)(f) := f(γ(f)).

Definition 3.19. An equilibrium lamination is a relatively compact subset L of J such
that

(1) γ(f) 6= γ′(f) for all f ∈M if γ, γ′ ∈ L with γ 6= γ′,
(2) for every f ∈M , the equilibrium measure of f gives full mass to {γ(f) | γ ∈ L},
(3) for every f ∈M and γ ∈ L, γ(f) is not a critical point of f,
(4) L is F -invariant and F : L → L is dk to 1.
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One of the characterization of the stability of the family (f)f∈M given by [Bia, Theorem
C] is that this family admits an equilibrium lamination. A key step in order to obtain
that all elements in M are conjugated near their small Julia set is first to construct local
conjugacies near the repelling point r(f).

Lemma 3.20. Assume that M satisfies (?) and let f0, f1 be two points in M . For each

i ∈ {0, 1}, there exist two connected neighborhoods Ũi b Ui of r(fi) with the following
properties.

• fi(Ũi) ∩ Ui = ∅ and f2
i is a biholomorphism between Ũi and Ui,

• there exists a biholomorphism ψ : U0 ∪ f0(Ũ0)→ U1 ∪ f1(Ũ1) such that

(4) f0 = ψ−1 ◦ f1 ◦ ψ and f2
0 = ψ−1 ◦ f2

1 ◦ ψ on Ũ0,

• if γ ∈ L verifies γ(f0) ∈ U0 then γ(f1) = ψ(γ(f0)),

Observe that, since f0(Ũ0) ∩ U0 = ∅, the first equality in (4) is simply a consequence
of the definition of ψ on these sets. However, it will guarantee that ψ gives a conjugacy
between f0 and f1 on a neighborhood of the small Julia sets as soon as the same holds
between f2

0 and f2
1 .

Proof. For i ∈ {0, 1}, let Ffi be the foliation of Dfi defined in § 3.5. Observe that
by Corollary 3.18, if x(f0) ∈ Λ(f0) ∩ Df0 lies on the leaf Ff0(c) := φf0(π−1(c)) then
its continuation x(f1) lies on Ff1(c) := φf1(π−1(c)). Replacing the family of polydisk
Γ(f) ⊂ W u

p(f) by a similar family with Γ(f) ⊂ Crit(f) given by Assumption 7, we can

extend this result to most point in Jk(f0) ∩Df0 . To be more precise, let γ ∈ L such that
γ(f0) ∈ Df0 . Since sets of the form (Γkn,ln(f0)) with Γ(f0) ⊂ Crit(f0) can approximate
every leaf Ff0(c), and since γ(f) is never in the postcritical set of f , an argument of proper
intersection gives that π ◦ δf (γ(f)) is independent of f .

In order to define ψ, it is sufficient to find, for i ∈ {0, 1}, k − 1 foliations (Gjfi)1≤j≤k−1

near r(fi) which satisfy the same invariant property and such that (Ffi ,G1
fi
, . . . ,Gk−1

fi
)

defines local coordinates near r(fi). For this last condition, it is sufficient to check that
the k tangent spaces at r(fi) of these k foliations form a family of k linearly independent
hyperplanes.

To this aim, observe first that by Assumption 6, p(fi) is in the domain of linearization of
r(fi) and, thus there exists n0 ≥ 1 such that fn0

i sends biholomorphically an open subset
Vi ⊂ Dfi to a neighborhood V ′i of p(fi). We denote by vi : V

′
i → Vi the associated inverse

branch of fn0
i . Moreover, the cone condition in Assumption 2 ensures that the leaves of

G0
fi

:= fn0
i (Ffi|Vi) are transverse to W s

p(fi),loc
. On the other hand, recall that (†) holds

on M thus there exist m ∈ N and x(fi) ∈ W u
p(fi),loc

∩ Λ(fi) such that fmi (x(fi)) = r(fi)

and that, by increasing m if necessary, we can assume that fmi sends biholomorphically
a neighborhood of x(fi) in W u

p(fi),loc
to a vertical graph Wm(fi) in Dfi . Hence, by the

inclination lemma, there exist n1 ≥ 1, a neighborhood Ui ⊂ Dfi of r(fi) and a small open
set V ′′i ⊂ V ′i close to p(fi) such that

• Ui ⊂ f2
i (Ui),

• fn1
i : V ′′i → Ui is a biholomorphism, whose inverse will be denoted by ui,

• the leaves of G1
fi

:= fn1
i (G0

fi|V ′′i
) are all C1-close to Wm(fi). In particular, the point

(2) in Definition 3.1 implies that the tangent space of the leaf of G1
fi

containing

r(fi) is a generic hyperplane for Dr(fi)f
2
i .
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This last point and our choice of m ensure that each leaf of G1
fi

intersects Λ(fi). More-

over, G1
fi

has the same invariant property than Ffi , i.e. if, for some γ ∈ L, γ(f0) is in

U0 and lies on a certain leaf of G1
f0

then γ(f1) lies on the corresponding leaf of G1
f1

. To
be more precise, first observe that, by reducing possibly each Ui, we can assume that
U1 = φf1 ◦ δf0(U0). Moreover, as in the beginning of this proof, the fact that each leaf of
Ffi can be approximated by Γk,l(fi) in the postcritical set of fi and properties (3) and
(4) in Definition 3.19 imply that if γ(f0) ∈ U0 then

π ◦ δf0 ◦ v0 ◦ u0(γ(f0)) = π ◦ δf1 ◦ v1 ◦ u1(γ(f1)).

The other foliations are simply defined as Gjfi :=
(
f

2(j−1)
i (G1

fi
)
)
|Ui

. They also have the

above invariant property since the same arguments imply

π ◦ δf0 ◦ v0 ◦ u0 ◦ gj−1
0 (γ(f0)) = π ◦ δf1 ◦ v1 ◦ u1 ◦ gj−1

1 (γ(f1)),

if γ ∈ L with γ(f0) ∈ U0, where gi is the local inverse of f2
i near r(fi). Furthermore, the

fact that the leaf of G1
fi

containing r(fi) is a generic hyperplane for Dr(fi)f
2
i assures that

the tangent spaces of Ffi , G1
fi
, . . . ,Gk−1

fi
at r(fi) are k linearly independent hyperplanes.

Hence, possibly by reducing Ui, these foliations define coordinates on Ui, i.e. since Ffi
(resp. Gjfi) corresponds to the fibration defined by π ◦ δfi (resp. π ◦ δfi ◦ vi ◦ ui ◦ g

j−1
i ),

there exist an open subset Ûi ⊂ Ck such that the holomorphic map ψi : Ui → Ûi defined
by

ψi(x) =
(
π ◦ δfi(x), π ◦ δfi ◦ vi ◦ ui(x), · · · , π ◦ δfi ◦ vi ◦ ui ◦ g

k−2
i (x)

)
is a biholomorphism.

Possibly by reducing again these sets, ψ := ψ−1
1 ◦ ψ0 is a biholomorphism between U0

and U1. Furthermore, the discussion above and Corollary 3.18 imply that if γ ∈ L verifies
γ(f0) ∈ U0 then γ(f1) ∈ U1 and γ(f1) = ψ(γ(f0)). In particular, ψ(r(f0)) = r(f1). Thus,
using that these points are 2-periodic and possibly by changing a last time U0 and U1, we
can assume that, for i ∈ {0, 1}, there exists a connected neighborhood Ũi b Ui of r(fi)

such that fi(Ũi) ∩ Ui = ∅ and f2
i defined a biholomorphism between Ũi and Ui. This

allows us to extend ψ on f0(Ũ0) by ψ(x) := f1 ◦ ψ(f−1
0 (x)) which artificially gives

f0 = ψ−1 ◦ f1 ◦ ψ on Ũ0.

On the other hand, coming back to f2
0 and f2

1 , the fact that ψ(γ(f0)) = γ(f1) for each
γ ∈ L with γ(f0) ∈ U0 implies that

(5) f2
0 = ψ−1 ◦ f2

1 ◦ ψ on Ũ0 ∩ Λ(f0).

Since Assumption 2 guarantees the point of the blender are in the small Julia set which is
not contained in an analytic subset of Ũ0, [FS], then Ũ0 ∩{γ(f0) | γ ∈ L} is not contained

in an analytic subset and the equality (5) holds on the whole set Ũ0. �

To emphasize on the dependency of ψ on f1, in what follows we will denote ψf the
corresponding map for f ∈M where f0 stays fixed.

Lemma 3.21. The closure L of L is a unbranched lamination. In particular, ψf extends
to a conjugacy between Jk(f0) and Jk(f).

Proof. Let f1 ∈M and let Ui, i ∈ {0, 1}, be as in Lemma 3.20. Let (γn)n≥0 and (ρn)n≥0 be
two sequences in L which converge toward two maps from M to Pk, γ and ρ respectively.
Assume also that γ(f1) = ρ(f1). Our first aim is to show that γ = ρ on M .
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Let N ≥ 0 be such that there exists x ∈ f−N1 (γ(f1)) ∩ U1. For n ≥ 0 large enough, let
xn ∈ U1 (resp. yn ∈ U1) be such that fN1 (xn) = γn(f1), fN1 (yn) = ρn(f1) and

lim
n→∞

xn = lim
n→∞

yn = x.

The point (4) in Definition 3.19 gives the existence of two sequences (γ̃n)n≥0 and (ρ̃n)n≥0

in L such that FN (γ̃n) = γn, FN (ρ̃n) = ρn and γ̃n(f1) = xn, ρ̃n(f1) = yn. Up to
a subsequence, we can assume that (γ̃n)n≥0 and (ρ̃n)n≥0 converge to two maps γ̃ and ρ̃.
Since by Lemma 3.20 ψf1(γ̃n(f0)) = γ̃n(f1) and ψf1(ρ̃n(f0)) = ρ̃n(f1) we have ψf1(γ̃(f0)) =

ψf1(ρ̃(f0)) and thus γ̃(f0) = ρ̃(f0) by injectivity of ψf1 . By applying FN , we also have
γ(f0) = ρ(f0). The same arguments with an arbitrary map f ∈M give γ = ρ. This proves
that L is unbranched.

From this, we can defined, for every γ ∈ L, ψf (γ(f0)) := γ(f). Since L is unbranched,
it extends ψf as a conjugacy between Jk(f0) and Jk(f). �

The extension of ψf to a neighborhood of Jk(f0) comes from the following partial
generalization of [BE1] to higher dimensions.

Proposition 3.22. Let f0 and f1 be two endomorphisms of Pk of degree d ≥ 2. Assume
there exist an open set V0 and a continuous map ψ : V0 ∪ Jk(f0)→ Pk such that

• ψ|Jk(f0) is a homeomorphism from Jk(f0) to Jk(f1) such that ψ ◦ f0 = f1 ◦ ψ on
Jk(f0),
• V0 ∩ Jk(f0) 6= ∅ and ψ|V0 is holomorphic.

Assume also that the exceptional set E(f0) of f0 is disjoint from Jk(f0). Then, there exist
two open neighborhoods N1 ⊂ N2 of Jk(f0) such that

• f0(N1) ⊂ N2,

• ψ extends to a holomorphic map ψ̃ on N2 such that f1 ◦ ψ̃ = ψ̃ ◦ f0 on N1.

For the proof, let C be the critical set of f0, A := f0(C) its set of critical values and
B := f−1

0 (A).

Lemma 3.23. Let x ∈ Pk \B, and let γ′ : [0, 1]→ Pk \A be a path such that γ′(0) = f(x).
Then there exists a unique path γ : [0, 1]→ Pk \B such that γ(0) = x and f0(γ(t)) = γ′(t)
for all t ∈ [0, 1].

Proof. This simply comes from the fact that f0 : Pk \B → Pk \A is a covering map. �

Lemma 3.24. Let x ∈ Pk and let V be a neighborhood of x. There exists a connected
open neighborhood Vx (resp. Wx) of x (resp. of f0(x)) such that

• Vx ⊂ V and Wx ⊂ f0(Vx),
• if γ′ : [0, 1]→ Wx \ A is a path and y ∈ f−1

0 (γ′(0)) ∩ Vx then there exists a path γ
in Vx with γ(0) = y and f0(γ(t)) = γ′(t) for all t ∈ [0, 1].

Notice that in the following proof we use a Lojasiewicz type inequality but the fact that
f is finite and open is sufficient.

Proof. Let Vx ⊂ V be a connected open neighborhood of x such that f−1
0 (f0(x))∩∂Vx = ∅,

i.e. dist(∂Vx, f
−1
0 (f0(x))) = a with a > 0. A Lojasiewicz type inequality ([FS, Corollary

4.12] when k = 2) gives that there exists a constant c > 0, depending only on f0, such
that

dist(f0(∂Vx), f0(x)) ≥ cadk .
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Since f0 is an open mapping, there exists ε > 0 such that ε < cad
k

and Wx := B(f0(x), ε) ⊂
f0(Vx). In particular, f0(∂Vx) ∩ Wx = ∅. Hence, if γ′ : [0, 1] → Wx \ A is a path and
y ∈ f−1

0 (γ′(0))∩Vx then by Lemma 3.23 we can lift γ′ to a path γ in Pk such that γ(0) = y.
And, since γ′([0, 1]) ⊂Wx and f0(∂Vx) ∩Wx = ∅, we must have γ([0, 1]) ⊂ Vx. �

Lemma 3.25. The set of points x in Jk(f0) where ψ admits a holomorphic extension in
a neighborhood of x is f0-invariant.

Proof. Let x ∈ Jk(f0) be such a point and let V be a neighborhood of x where ψ extends
holomorphically. The interesting case is when x is a critical point of f0. Let Vx and Wx

the connected open neighborhood of x and f0(x) respectively given by Lemma 3.24. Let
y ∈ Wx \ A and let y1 and y2 be two points in ∈ f−1

0 (y) ∩ Vx. The goal is to show that
f1(ψ(y1)) = f1(ψ(y2)) since in that case, we can define ψ on Wx \ A using local inverse
branches of f0 and the definition will extends to Wx.

Since x is in Jk(f0) the same holds for f0(x). The fact that Jk(f0) is nowhere pluripolar
[FS] implies the existence of z ∈ (Wx ∩ Jk(f0)) \ A. Let γ′ be a simple path in Wx \ A
between y and z. By Lemma 3.24, it admits two lifts γ1 and γ2 in Vx such that γ1(0) = y1

and γ2(0) = y2. The end points z1 := γ1(1) and z2 := γ2(1) are preimages of z and
thus are in Jk(f0). Since γ′ is simple, by analytic continuation there exist a connected
neighborhood Ω of γ′([0, 1]) and two holomorphic maps, g1 and g2, from Ω to Vx such that
for i ∈ {1, 2},

• gi is an inverse branch of f0, i.e. f0 ◦ gi = idΩ,
• γi(t) = gi(γ

′(t)) for all t ∈ [0, 1].

Since ψ|Jk(f0) conjugates f0 to f1 on Jk(f0), we have f1 ◦ ψ ◦ gi = ψ on Ω ∩ Jk(f0) for
i ∈ {1, 2}. Hence, the fact that Ω ∩ Jk(f0) is not pluripolar and the connectedness of
Ω implies that f1 ◦ ψ ◦ g1 = f1 ◦ ψ ◦ g2 on Ω. In particular f1(ψ(y1)) = f1(ψ(g1(y))) =
f1(ψ(g2(y))) = f1(ψ(y2)). �

From this, the proof of Proposition 3.22 is identical to the one of [BE1, Lemma 3] but
we give it for completeness.

Proof of Proposition 3.22. Since Jk(f0)∩E(f0) = ∅, there exists N ≥ 1 such that Jk(f0) ⊂
fN0 (U1). Hence, Lemma 3.25 implies that for all x ∈ Jk(f0) there is a holomorphic ex-
tension ψx of ψ in a neighborhood of x. In particular, there exists rx > 0 such that
ψx is defined on B(x, 3rx). Observe that if x, y ∈ Jk(f0) are such that rx ≤ ry and
B(x, rx) ∩ B(y, ry) 6= ∅ then B(x, rx) ⊂ B(y, 3ry). In particular, by non-pluripolarity
of B(x, rx) ∩ Jk(f0), we have that ψx = ψy on B(x, rx). Hence, ψ has a holomorphic

extension ψ̃ on

N2 :=
⋃

x∈Jk(f0)

B(x, rx).

By continuity of f0, there exists an open neighborhood N1 ⊂ N2 of Jk(f0) such that
f0(N1) ⊂ N2. We also can assume that each connected component of N1 intersects Jk(f0).

If N is such connected component then f1 ◦ ψ̃ = ψ̃ ◦ f0 on N ∩ Jk(f0) by definition of ψ

and thus by analytic continuation f1 ◦ ψ̃ = ψ̃ ◦ f0 on N . �

This allows us to finish to proof of Theorem 3.4.

Proof of Theorem 3.4. Let M be an analytic subset of Ω satisfying (?). Let f0 and f1

be two elements of M . By Lemma 3.20 and Lemma 3.21, there exists a map ψ, given
on Jk(f0) by the unbranched holomorphic motion L, which verifies the assumption of
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Proposition 3.22. Observe that we use here Assumption 9 which ensures that Jk(f0) is
disjoint from the exceptional set E(f0). Hence, there are two neighborhood N1 ⊂ N2 of

Jk(f0) and a holomorphic map ψ̃ on N2 such that f1 ◦ ψ̃ = ψ̃ ◦ f0 on N1. This directly
implies that all the periodic points in Jk(f0) can be followed holomorphically on M and
that their multipliers are constant on M . �

4. Existence of a good open subset in Endkd

The aim of this section is to prove the following existence statement.

Theorem 4.1. There exist (a, ε, σ3, . . . , σk) ∈ (R>0)k and a small perturbation f ∈ Polykd
of the map f0 : Ck → Ck given by

f0(z, w, y3, . . . , yk) = (eiπ/4z + εw, a(w2 − 1), σ3y3, . . . , σkyk)

such that f admits a neighborhood Ω in Endkd which satisfies all the assumptions described
in § 3.2.

Remark 4.2. Since the map f in Theorem 4.1 belongs to Polykd, the result also provides

a non-empty open subset of Polykd satisfying all the assumptions of § 3.2.

The structure of the section is the following. In § 4.1, we recall elementary results
about the dynamics of w 7→ a(w2 − 1) when |a| is large. In § 4.2, we start to study
the 2-dimensional case which is the most important one. In particular, Lemma 4.5 and
Lemma 4.6 settle the blender property for the repelling hyperbolic set Λ. Observe that for
d = 2, it is delicate to obtain a saddle point and a repelling hyperbolic set which form a
heterodimensional cycle. This explains why we have to work with the second or the fourth
iterates of our maps. § 4.2 is also devoted to the study of the degeneracy of these maps
when the parameter a goes to infinity. This is the key ingredient to check Assumption
10 of § 3.2, which is by far the more difficult to obtain. The case of higher dimension
is considered in § 4.3 where the parameters are chosen more carefully, in particular to
linearize in family the dynamics near the two periodic points p and r. § 4.4 is devoted to
establish the point iii) in Assumption 10. Finally, we prove Theorem 4.1 in § 4.5.

4.1. Dynamics of a(w2 − 1). For a ∈ C∗ we consider the polynomial map qa(w) :=
a(w2 − 1). For |a| large enough, qa is hyperbolic with a Cantor set as Julia set. In what
follows, we will construct a blender for a map of the form (z, w) 7→ (g(z, w), q4

a(w)). To
this end, we need to consider open sets with a specific (but simple) combinatoric.

From now on, we fix a ∈ C∗ with |a| > 10.

Lemma 4.3. There exists a neighborhood U+ (resp. U−) of 1 (resp. −1) such that qa|U±
is a biholomorphism between U± and D3, and

D(±1, |a|−1) ⊂ U± ⊂ D(±1, 3|a|−1).

In particular, qa admits a unique fixed point w̃(a) ∈ U−.

This implies that the Julia set of qa is a Cantor set, equal to Jqa = ∩n≥0q
−n
a (U+ ∪U−).

Its dynamics corresponds to a (one-sided) full 2-shift. However, our construction will not
use the entire Jqa but two smaller hyperbolic sets.

The first one is simply the unique fixed point w̃(a) ∈ U−. For the second one, let
g+ : D3 → U+ and g− : D3 → U− be the two inverse branches of qa obtained in Lemma
4.3. From this, we define the following open sets:

• V− := g−(U+) and V+ := g+(U−),
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• V1 := q−2
a (V+)∩V+, V2 := q−2

a (V−)∩V+, V3 := q−2
a (V+)∩V− and V4 := q−2

a (V−)∩V−.

They satisfy q2
a(V−) = q2

a(V+) = D3 and q4
a(Vi) = D3 for i ∈ {1, 2, 3, 4}. The definition of

Vi ensures that the associated maximal invariant sets are equal, i.e.

(6) E :=
⋂
n≥0

q−2n
a (V+ ∪ V−) =

⋂
n≥0

q−4n
a (∪4

i=1Vi).

It is also a Cantor set where q2
a is conjugated to a full 2-shift. Observe that if {+,−}

is the alphabet for qa|Jqa then q2
a|E corresponds to the 2-shift associated to {+−,−+}.

This alternation will play an important role in the proof of Theorem 4.1. In particular,
the second coordinates of r in Assumption 6 will be the point w0(a) which is the unique
2-periodic point of qa in V4 ⊂ V−. We will need the following simple fact later.

Lemma 4.4. If a is real then the 2-periodic point w0(a) ∈ V− is also real. Actually, the
two inverse branches, g+ : D3 → U+ and g− : D3 → U− are real. In particular, wl(a) :=
(g+ ◦ g−)l(w0(a)), are real for all l ≥ 0.

All the subsets defined in this section depend on a. If necessary, we will write U±(a),
V±(a), Vi(a) or E(a) to emphasize on these dependencies.

4.2. Perturbations of product maps and the IFS at infinity. The construction in
Theorem 4.1 starts from a skew product

Fλ(z, w) = (αz + εw + βzw, qa(w)),

where λ = (a, α, β, ε). Such a map does not extend to P2. The case of Endkd with a general
k ≥ 2 will be considered in § 4.3. Several objects denoted with stylized uppercase letters
in this section (e.g. Fλ, P(λ), R(λ)) will corresponds to lowercase letters in § 4.3 (e.g. fλ,
p(λ), r(λ)).

A first observation is that F(a,α,β,ε) and F(a,α,β,ε′) are globally conjugated if ε 6= 0 6= ε′.
The role of the parameter ε 6= 0 is just to rescale the dynamics in order to have the blender
property above D.

If w̃(a) denotes the unique fixed point of qa in U−(a) then Fλ has a fixed point

P(λ) =

(
−εw̃(a)

α+ βw̃(a)− 1
, w̃(a)

)
,

which is repelling in a vertical direction and whose multiplier in the horizontal direction is
α+ βw̃(a), very close to α− β when |a| is large. On the other hand, by the choice of the
sets V+(a) and V−(a), the dynamics in the horizontal direction of the second iterate F2

λ is
mainly a dilatation of factor α2 − β2 on C× (V+(a) ∪ V−(a)). Hence, in what follows we
will choose α and β in order to have |α − β| < 1, which implies that P(λ) is saddle, and
|α2 − β2| > 1 which ensures the existence of a repelling hyperbolic set Λ(λ) for F2

λ. This
hyperbolic set will have a blender property if α, β and ε are well chosen and it will project
on E(a). In order to check transversality properties, we will make a goes to infinity. In
this situation, the set E(a) degenerates to {−1, 1} and the dynamics on Λ(λ) degenerates
to (the inverse of) an iterated function system (IFS) with 2 generators.

To be more precise, the second iterate of Fλ is

F2
λ(z, w) = (z(α2 + αβ(w + qa(w)) + β2wqa(w)) + ε(αw + qa(w) + βwqa(w)), q2

a(w)).

In particular, since

V+(a) ⊂ qa(V−) = U+(a) ⊂ D(1, 3|a|−1) and V−(a) ⊂ qa(V+) = U−(a) ⊂ D(−1, 3|a|−1),
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if λ̂ := (α, β, ε) ∈ C3 and R > 0 are fixed then for |a| > 10 large enough, F2
λ(z, w)

is arbitrarily close to (φ+

λ̂
(z), q2

a(w)) (resp. (φ−
λ̂

(z), q2
a(w))) on DR × V+(a) (resp. on

DR × V−(a)) where

φ+

λ̂
(z) = (α2 − β2)z − ε(β + 1− α), φ−

λ̂
(z) = (α2 − β2)z − ε(β + α− 1).

From this, we define

φ1,λ̂ := φ+

λ̂
◦ φ+

λ̂
, φ2,λ̂ := φ−

λ̂
◦ φ+

λ̂
, φ3,λ̂ := φ+

λ̂
◦ φ−

λ̂
and φ4,λ̂ := φ−

λ̂
◦ φ−

λ̂

in order to have F4
λ(z, w) ' (φj,λ̂(z), q4

a(w)) on DR × Vj(a).

Now, we fix a small real A > 0 and take α0 := ζ(1 + A) and β0 := 2Aζ where ζ ∈ S1.
This gives α0−β0 = ζ(1−A) and thus the fixed point P(a, α0, β0, ε) is saddle for |a| large
enough. On the other hand, α2

0 − β2
0 = ζ2(1 + 2A− 3A2) which has modulus larger than

1 if A < 2/3. For the constant ζ ∈ S1, following [Du, Lemma 4.4], we will take ζ = eiπ/4

in order to have a blender property for Λ(λ). The following result can be seen as the
counterpart in our context of this lemma using the vocabulary of [T].

Lemma 4.5. Let ζ := eiπ/4 and ε0 = (20(ζ − 1))−1. Let 0 < A < 1/10 be small enough

and let set λ̂0 := (α0, β0, ε0) where

α0 = ζ(1 +A) and β0 = 2Aζ.

Then, there exist four open sets Hj, j ∈ {1, 2, 3, 4} such that

D2 = ∪4
j=1Hj , φj,λ̂0(Hj) ⊂ D2 and D ⊂ Hj .

Proof. For λ̂1 := (ζ, 0, ε0), an easy computation gives

φ1,λ̂1
(z) = −z+1 + i

20
, φ2,λ̂1

(z) = −z+ i− 1

20
, φ3,λ̂1

(z) = −z+1− i
20

and φ4,λ̂1
(z) = −z−1 + i

20
.

Moreover, if we define

Hj = D4/3 ∪ {z ∈ D2 ; | arg(zζ−2j+1)| < π/3},

then φj,λ̂1(Hj) ⊂ D2. Actually, this simply comes from the inequalities |2eiπ/3−
√

2/20| < 2

and |
√

2/20| < 1. Since this inclusion is stable under small perturbations, if A > 0 is small

enough and j ∈ {1, 2, 3, 4} then φj,λ̂0(Hj) ⊂ D2 when λ̂0 = (ζ(1 + A), 2Aζ, ε0). On the

other hand, D2 = ∪4
j=1Hj and D ⊂ ∩4

j=1Hj easily follow from the definition of Hj . �

Since the properties in Lemma 4.5 are stable under small perturbations, they persist
in a small neighborhood of λ̂0 = (α0, β0, ε0). From now on, we denote by M̂ such small

neighborhood of λ̂0 which is connected and where, moreover, for all λ̂ = (α, β, ε) ∈ M̂

(7) 1/20 < |ε| < 1/10, |α− β| < 1 and |α2| − |β2| > 1 +A

In particular, if R := A−1, the maps φ±
λ̂

satisfies DR ⊂ φ±λ̂ (DR).

The next step is to define the hyperbolic set Λ with the blender property which appears
in Assumptions 2 and 4.

Lemma 4.6. There exist ρ > 100 and δ > 100 such that, if |a| > δ then for every

(α, β, ε) ∈ M̂ the map Fλ, with λ := (a, α, β, ε), satisfies the following properties.
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• On both DR × V−(a) and DR × V+(a) the map F2
λ is injective, contracts the cone

field Cρ and is expanding. Moreover

DR × (U+(a) ∪ U−(a)) ⊂ F2
λ(DR × V±(a)).

In particular, the set Λ(λ) := ∩n≥0F−2n
λ (DR × (V−(a) ∪ V+(a))) is a hyperbolic

repelling invariant set for F2
λ.

• For i ∈ {1, 2, 3, 4}, any vertical graph in Hi×Vi(a) tangent to the cone Cρ intersects
Λ(λ).

Moreover, both statements are stable under small C1-perturbations of Fλ.

Proof. Let λ̂ = (α, β, ε) be in M̂ . The key ingredient is that if |a| is large enough then F2
λ

is arbitrarily close to the product map (φ±
λ̂
, q2
a) on DR × V±(a) and F4

λ is arbitrarily close

to (φj,λ̂, q
4
a) on Hj × Vj(a). This gives easily that F2

λ is expanding on DR × V±(a) and

also injective since q2
a is injective on V±(a). Moreover, F2

λ contracts the cone field Cρ on
DR×V±(a) for |a| large since the derivative of F2

λ in the vertical direction is bounded from
below by |a|2 while the derivative in the horizontal direction is uniformly bounded from
above on DR × V±(a). Hence, for every ρ > 0 there exists δ > 0 such that F2

λ contracts
the cone field Cρ on DR × V±(a) as soon as |a| > δ.

We also have DR × (U+(a) ∪ U−(a)) ⊂ F2
λ(DR × V±(a)) since U+(a) ∪ U−(a) ⊂ D3 =

q2
a(V±(a)) and DR ⊂ φ±

λ̂
(DR). From this, it is classical that Λ(λ) := ∩n≥0F−2n

λ (DR ×
(V−(a) ∪ V+(a))) is a hyperbolic repelling set for F2

λ. Actually, it is easy to see that Λ(λ)
is homeomorphic, via the second canonical projection, to the corresponding set E(a) for
q2
a defined by (6) which is a Cantor set. Observe that, as in (6), we also have Λ(λ) =
∩n≥0F−4n

λ (DR × (∪4
j=1Vj(a))).

The second statement is the counterpart of [Du, Lemma 4.5] or [T, Proposition 3.3] in
our setting and we only sketch the proof. Let Hj , j ∈ {1, 2, 3, 4}, be the four open subsets

of D2 defined in Lemma 4.5. Recall that D2 = ∪4
j=1Hj , D ⊂ Hj and φj,λ̂(Hj) ⊂ D2,

where this last inclusion comes from our choice of M̂ . In particular, there exists r > 0
such that ∪4

j=1φj,λ̂(Hj) ⊂ D2−r and thus, if |a| is large enough and we set F4
λ(z, w) =

(Fλ(z, w), q4
a(w)) then

4⋃
j=1

Fλ(Hj × Vj(a)) ⊂
4⋃
j=1

Hj .

Let η > 0 denote the Lebesgue number of this open cover. If ρ > 0 is large enough then
the projection on the first coordinate of a vertical graph tangent to Cρ has diameter less
than η. Hence, if j0 ∈ {1, 2, 3, 4} and Γ0 ⊂ Hj0 × Vj0(a) is a vertical graph tangent to Cρ
then F4

λ(Γ0) contains a vertical graph Γ1 in Hj1 × Vj1(a) for some j1 ∈ {1, 2, 3, 4} which
is tangent to Cρ. By induction, we obtain a sequence of vertical graph Γn ⊂ F4n

λ (Γ0) in

some Hjn × Vjn(a) and thus Γ0 intersects ∩n≥0F−4n
λ (DR × (∪4

j=1Vj(a))) = Λ(λ). �

By construction, each point in Λ(λ) is associated to a unique word ω in Σ := {−1, 1}N.
To be more precise, let gλ,+ : DR×D2 → DR×V+(a) and gλ,+ : DR×D2 → DR×V−(a) be
the two inverse branches of F2

λ. If we identify the symbol + with 1 and − with −1 then

a word ω = (ωn)n≥0 ∈ Σ := {−1, 1}N induces a dynamical system (gnλ,ω)n≥0 where

gnλ,ω := gλ,ω0 ◦ · · · ◦ gλ,ωn−1 .
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Since the maps gλ,± are contracting, the sequence (gnλ,ω(y))n≥0 has a limit, denoted by

xω(λ), which is independent of y ∈ DR×D2. The hyperbolic set Λ(λ) corresponds exactly
to {xω(λ) ; ω ∈ Σ} and the repelling pointR(λ) in Assumption 6 is, in this situation, xω(λ)
where ω = (−1)n≥0. Observe that xω(λ) depends holomorphically on λ and continuously
on ω with respect to the product topology on Σ.

In order to check Assumption 10, we are interested in parameters λ = (a, α, β, ε) and
ω ∈ Σ where xω(λ) is a preimage of R(λ) lying on W u

P(λ),loc with a additional condition on

the multipliers. Here, we consider the local unstable manifold in DR ×D(−1, 1/2), which
is a vertical graph since one easily check that Fλ contracts Cρ there. In what follows, we
will study the degeneracy of these relations xω(λ) ∈ W u

P(λ),loc when α, β and ε are fixed

and |a| tends to infinity. In this situation, the maps gλ,± converge to (`λ̂,±,±1) where

(8) `λ̂,+(z) = µz + ν+ and `λ̂,−(z) = µz + ν−,

with λ̂ = (α, β, ε), µ := (α2 − β2)−1 and ν± := µε(β ± (1 − α)). Hence, when |a| goes to

infinity, the first projection of Λ(λ̂, a) degenerates to the limit set of the IFS Lλ̂ generated

by `λ̂,+ and `λ̂,−. The point xω(λ) converges to (zω(λ̂), ω0) where

zω(λ̂) := lim
n→∞

`λ̂,ω0
◦ · · · ◦ `λ̂,ωn−1

(y)

for any y ∈ C. The limit set of Lλ̂ is then equal to {zω(λ̂) ; ω ∈ Σ}.
The definition of `± in (8) ensures that

zω(λ̂) =
∑
n≥0

νωnµ
n.

Using the definition of ν±, this gives

(9) zω(λ̂) = εµ

(
β

1− µ
+ (1− α)hω(µ)

)
,

where hω(µ) :=
∑

n≥0 ωnµ
n. On the other hand, Fλ contracts Cρ on DR × D(−1, 1/2)

thus when a goes to infinity, the unstable manifold W u
P(a,α,β,ε),loc converges to the vertical

line W u
P(∞,α,β,ε),loc := {z = ε

α−β−1}. These information help us to understand the relation

xω(λ) ∈ W u
P(λ),loc. The following result will in particular imply Assumption 5. As a will

converge to infinity, we denote by D(∞, r) the set {∞} ∪ {y ∈ C ; |y| > 1/r}.

Lemma 4.7. Let δ > 100 be as in Lemma 4.6 and (α0, β0, ε0) be as in Lemma 4.5. There

exists a non-empty connected open neighborhood M of (∞, α0, β0, ε0) in D(∞, 1/δ) × M̂
such that for each ω ∈ Σ, the analytic set

Xω :=
{
λ ∈ D(∞, 1/δ)× M̂ ; xω(λ) ∈W u

P(λ),loc

}
is a (possibly empty) hypersurface and each irreducible component of Xω that intersects

M also intersects {∞} × M̂.

Proof. It is clear that Xω is an analytic set of codimension at most 1 (if not empty). Let

assume that for some ω ∈ Σ we have Xω = D(∞, 1/δ) × M̂ . In particular, with a = ∞
we have for all (α, β, ε) ∈ M̂ , and after simplification by ε, that

µ

(
β

1− µ
+ (1− α)hω(µ)

)
=

1

α− β − 1
,
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where µ = (α2 − β2)−1. As M̂ is open and as the radius of convergence of hω is 1, this
equality should hold for all (α, β) ∈ C2 with |α2 − β2| > 1 which is impossible with α = 2
and β = 1 since the right hand side diverges.

Observe that we have proved the stronger result that the intersections between each
Xω and {∞} × M̂ are proper. This will allow us to prove the second statement by

contradiction. Assume there exist a sequence (ωn)n≥0 in Σ and a sequence (λn)n≥0 in M̂
converging toward λ∞ := (∞, α0, β0, ε0) such that λn belongs to an irreducible component

Cωn of Xωn which is disjoint from {∞} × M̂ . Up to a subsequence, (ωn)n≥0 converges
to some ω∞ ∈ Σ and thus Xωn converges to Xω∞ and Cωn converges to a union of
irreducible components Cω∞ of Xω∞ . Since λn ∈ Cωn , we must have λ∞ ∈ Cω∞ , i.e.

Cω∞ ∩ {∞} × M̂ 6= ∅. The fact that Cωn is disjoint from {∞} × M̂ then contradicts the
persistence of proper intersections (see e.g. [C, §12.3]). �

From this, we can check the counterpart of point i) and ii) of Assumption 10 in the

open set M . In § 4.3, we will obtain an open subset of CNk
d in the same way.

The next step is to check that we have a dense set of maps where points i), ii) and
iv) in Assumption 10 are simultaneously satisfy. We denote by χP(λ) (resp. χR(λ)) the

eigenvalue of DP(λ)Fλ (resp. DR(λ)F2
λ) with the smallest modulus. A first observation,

already made in Remark 3.15, is that the condition 〈χP(λ), χR(λ)〉 = C∗ is equivalent to

1, θ and t being independent over Q, where χR(λ) = e2iπθχtP(λ). This is fulfilled by a

dense subsets of (θ, t) ∈ R2. Hence, in order to have i), ii) and iv) in Assumption 10
simultaneously it is sufficient to have the “transversality” property described in Lemma
4.9 below, between two families of hypersurfaces (Yζ,t)ζ∈S1,t∈R and (Xω)ω∈Σ. If ζ ∈ S1 and
t ∈ R, we set

Yζ,t :=
{
λ ∈ D(∞, 1/δ)× M̂ ; χR(λ) = ζχtP(λ)

}
.

Observe that χR(a,α,β,ε) ' α2− β2 and χP(a,α,β,ε) ' α− β near a =∞ so Yζ,t is actually a
hypersurface. The family (Yζ,t)ζ∈S1,t∈R defined a (possibly singular) foliation which is not
holomorphic. On the other hand, (Xω)ω∈Σ is parametrized by a Cantor set and depends
continuously on ω. Furthermore, the blender property of Λ(λ) ensures that (Xω)ω∈Σ covers

D(∞, 1/δ)×M̂ . Actually, many points belong to two Xω and Xω′ at the same time, which
will greatly simplify the verification of Assumption 10.

Lemma 4.8. Possibly by reducing M , for each λ ∈M
• W u

P(λ),loc ⊂ D1/4 ×D(−1, 1/2),

• there exist two words ω, ω′ ∈ Σ such that ω′ 6= ω and λ ∈ Xω ∩Xω′.

Proof. The first point simply follows from the facts that P(λ) ∈ D1/4 × D(−1, 1/2) and
that W u

P(λ),loc is almost a straight vertical graph when |a| is large.

For the second point, observe that both V3(a) and V4(a) are contained in D(−1, 1/2)
hence, since each Hj in Lemma 4.5 contains D1/4 ⊂ D, the local stable manifold W u

P(λ),loc

intersects H3 × V3(a) and H4 × V4(a) in two vertical graphs tangent to Cρ. By Lemma
4.6, there exist two intersections between W u

P(λ),loc and Λ(λ). �

Lemma 4.9. Let M be as in Lemma 4.8. Let ω, ω′ ∈ Σ, λ ∈ M and (ζ, t) ∈ S1 × R.
If there exist irreducible components Zω and Zω′ of Xω and Xω′ respectively such that
λ ∈ Zω = Zω′ ⊂ Yζ,t then ω = ω′.
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Proof. In this situation, by Lemma 4.7, Zω intersects {∞} × M̂ . As we have seen in the

proof of Lemma 4.7, a point λ = (∞, α, β, ε) ∈ {∞} × M̂ is in Xω if and only if

εµ

(
β

1− µ
+ (1− α)hω(µ)

)
=

ε

α− β − 1
,

where µ = (α2 − β2)−1 = χ−1
R(λ) and hω(µ) =

∑
n≥0 ωnµ

n. The relation Zω = Zω′ implies

that on Ẑω := Zω ∩ {∞} × M̂ , which has dimension at least 2, hω(µ) = hω′(µ). If ω 6= ω′

then these two power series are different and µ has to be constant on Ẑω. On the other
hand, Zω ⊂ Yζ,t hence χR(λ) = ζχtP(λ) on Ẑω. Since χR(∞,α,β,ε) = α2 − β2 = µ−1 and

χP(∞,α,β,ε) = α − β, both are constant on Ẑω and thus α, β are also constant. This

contradicts the fact that Ẑω has dimension at least 2. Hence, ω = ω′. �

4.3. Higher dimensions and degrees. The next step is to pass to higher dimensions
and degrees. Let k ≥ 2 and d ≥ 2. We denote by [y0 : · · · : yk] the homogeneous
coordinates on Pk and we will mainly work on the affine chart y0 = 1. Since the important
coordinates for the dynamics are the two first ones, we take the convention of notation
that

z = y1, w = y2 and y = (y3, . . . , yk).

Recall that Nk
d := (k + 1)

(
k+d
d

)
is the dimension of the set of k + 1 homogeneous poly-

nomials of degree d. We choose coordinates in CNk
d such that, if σ = (σ3, . . . , σk) and

τ = (τ3, . . . , τk) are in Ck−2 then the parameter λ = (a, α, β, ε, σ, τ, 0) ∈ CNk
d corresponds

to the map

(10) fλ(z, w, y) =

(
αz + εw + βzw + w

k∑
i=3

τiyi, qa(w), σ3y3, . . . , σkyk

)
.

Observe that, when τ = 0 then this map is a product map, acting by F(a,α,β,ε) on (z, w)

and by a diagonal matrix on y. When τ 6= 0 then it is a skew product of C × Ck−1.
In what follows, we will take σ with |σi| > 1 very large with respect to α, β and ε to
ensure a dominated splitting. The choice of σ will also depend on a in order to obtain
non-resonance conditions for the periodic points p and r. The parameter τ will be chosen
very small at the end and its only role will be to obtain the point iii) in Assumption 10.

To be more explicit, let (a, α, β, ε) be in the set M given by Lemma 4.7, let τ = 0 and
let σ = (σ3, . . . , σk) ∈ Ck−2 be such that each |σi| > 1 is large. In this situation, the
corresponding map fλ has a fixed saddle point p(λ) = (P(λ), 0), a period 2 repelling point
r(λ) = (R(λ), 0) and a repelling hyperbolic set

Λ(λ) :=
⋂
n≥0

f−2n
λ (DR × (V−(a) ∪ V+(a))× Dk−2)

which is equal to the product of the hyperbolic set of F(a,α,β,ε) with {0}. If each |σi| > 1 is

large enough then the cone field Cρ := {(u1, . . . , uk) ∈ Ck ; ρ|u1| ≤ max2≤i≤k |uk|}, where

ρ is given by Lemma 4.6, is contracted by fλ (resp. f2
λ) on DR × (U−(a) ∪ U+(a))×Dk−2

(resp. DR × (V−(a) ∪ V+(a)) × Dk−2) and thus Λ(λ) has the following blender property:
for each i ∈ {1, 2, 3, 4}, any vertical graph in D × Vi(a) × Dk−2 tangent to Cρ intersects
Λ(λ). Moreover, a simple computation gives that the critical set of fλ is disjoint from
DR×(U−(a)∪U+(a))×Dk−2 and that the stable manifold of p(λ) is equal to C×{(w̃(a), 0)},
where w̃(a) is the unique fixed point of qa in U−(a).
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We also need non-resonance conditions for p(λ) and r(λ) and for that we will choose
(a, α, β, ε) ∈ M and σ more carefully. When |a| is very large then the eigenvalues of
Dp(λ)fλ are close to α − β, −2a and σ3, . . . , σk. Those of Dr(λ)f

2
λ are close to α2 − β2,

−4a2 and σ2
3, . . . , σ

2
k. In both cases, only the first two ones depend on a. Hence, we can

first fix α1, β1 and ε1 then a1 ∈ R+ then σ1 = (σi)3≤i≤k ∈ (R−)k−2 in order to have

(a1, α1, β1, ε1) ∈M and for fλ1 , λ1 := (a1, α1, β1, ε1, σ1, 0) ∈ CNk
d

(1) the eigenvalues of p(λ1) satisfy the strong Sternberg condition of order 3,
(2) max3≤i≤k |σi| < |a1| < min3≤i≤k |σi|2/4,
(3) there is no resonance between the eigenvalues of Dr(λ1)f

2
λ1

and they are all differ-
ent.

A first remark is that we choose a1 in R+ and σ1 in (R−)k−2 only to have specific cone
contractions for Lemma 4.12. For the other properties, recall that there is a resonance
between k complex numbers (η1, . . . , ηk) if there exist j ∈ {1, . . . , k} and a multi-index

N = (N1, . . . , Nk) of non-negative integers such that
∑k

i=1Ni ≥ 2 and
∣∣∣∏k

i=1 η
Ni
i

∣∣∣ = |ηj |.
Notice that for repelling or attracting periodic points, the eigenvalues have no resonance for
an open and dense set of parameters, as soon as there is no persistence relations between
them, which is our case. In this situation, the periodic point can be holomorphically
linearized, with a linearization which depends holomorphically in the parameters. This
can be seen in the proof of Lattès in [Lat] for k = 2 and Berger and Reinke deal with a
much more general setting in [BR]. Observe that we also ask for different eigenvalues in
order to locally follow the associated eigenspaces.

In the saddle case, the absence of resonance is no longer an open condition and in
particular, it might be not possible to holomorphically linearized in family. Thus, we use
the work of Sell [Se] in order to have C1-linearization in family. The strong Sternberg
condition of order 3 comes from [Se] and is implied by the non-existence of resonance with

multi-index N = (N1, . . . , Nk) with
∑k

i=1Ni ≤ 3 which is an open and dense property.
The condition (2) above ensures that the spectral spreads as defined in [Se] satisfy ρ− = 1
and ρ+ < 2. Hence, [Se, Theorem 7] implies that the dynamics near p(λ) can be C1-
linearized for λ in a small neighborhood of λ1 and with a linearization which depends
continuously in the C1-topology on λ.

Since all the properties above are stable under small C1-perturbations there exists a

small connected open neighborhood M̃ of λ1 in CNk
d such that p(λ), r(λ) and Λ(λ) can be

followed holomorphically and, for each λ ∈ M̃ , in addition to the linearization properties
of p(λ) and r(λ) we just mentioned, we also have the following properties.

• If we set U± := U±(a1), V± := V±(a1), U± := DR × U± × Dk−2 and V± :=
DR × V± × Dk−2 then fλ (resp. f2

λ) contracts to cone field Cρ on U+ ∪ U− (resp.

on V+ ∪ V−) and U+ ∪ U− ⊂ f2
λ(V±) with f2

λ injective and expanding on V+ and
on V−.
• The critical set of fλ is disjoint from U+ ∪ U−.
• Using inverse branches, each point in Λ(λ) corresponds to a unique coding ω ∈ Σ

and (λ 7→ xω(λ))ω∈Σ gives the holomorphic motion of Λ(λ).
• For each i ∈ {1, 2, 3, 4}, any vertical graph in D × Vi(a1) × Dk−2 tangent to Cρ

intersects Λ(λ).
• p(λ) is saddle and W u

p(λ),loc is a hypersurface intersecting D1/4 × V− × Dk−2 as a

vertical graph tangent to Cρ. In particular, as in Lemma 4.8, W u
p(λ),loc intersects

Λ(λ) at two different points.
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• The stable manifold W s
p(λ) contains a subset close to DR × {(w̃(a1), 0)} and in

particular it intersects any vertical graphs in U− tangent to Cρ.
• r(λ) is a repelling 2-periodic point in Λ(λ) with k different eigenvalues.

In particular, we can define for ω ∈ Σ

X̃ω :=
{
λ ∈ M̃ ; xω(λ) ∈W u

p(λ),loc

}
,

and for (ζ, t) ∈ S1 × R, if χr(λ) (resp. χp(λ)) is the eigenvalue of Dr(λ)f
2
λ (resp. Dp(λ)fλ)

with the smallest modulus,

Ỹζ,t :=
{
λ ∈ M̃ ; χr(λ) = ζχtp(λ)

}
.

The following result is easily deduced from its counterpart on M .

Lemma 4.10. For each ω ∈ Σ the set X̃ω is a (possible empty) hypersurface of M̃ .

Moreover, there exists a connected open neighborhood M̃ ′ ⊂ M̃ of λ1 such that if (ζ, t) are

in S1 ×R and λ ∈ M̃ ′ is a regular point of Ỹζ,t then there is ω ∈ Σ such that λ belongs to

an irreducible component of X̃ω which is not included in Ỹζ,t.

Proof. The first point is a direct consequence of Lemma 4.7 since if X̃ω = M̃ then Xω =
D(∞, 1/δ)× M̂ .

Exactly as in the proof of Lemma 4.7, there exists a connected open neighborhood λ1

in M̃ such that if an irreducible component of X̃ω intersects M̃ ′ then it also intersects
M × {(σ1, 0)}.

Let (ζ, t) ∈ S1 × R and λ ∈ M̃ ′ be a regular point of Yζ,t. As we have already seen,

there exists two different coding ω, ω′ ∈ Σ such that λ ∈ X̃ω ∩ X̃ω′ . Let Z̃ω and Z̃ω′ be
irreducible components of X̃ω and X̃ω′ respectively containing λ. Assume by contradiction
that both X̃ω and X̃ω′ are contained in Ỹζ,t. As λ is a regular point of Ỹζ,t this implies

that Z̃ω = Z̃ω′ ⊂ Ỹζ,t. Hence, since Z̃ω intersects M × {(σ1, 0)}, a similar result holds on
M which is not possible by Lemma 4.9. �

As a consequence, generically p(λ) has plenty of homoclinic points.

Lemma 4.11. The set of parameters in M̃ where Assumption 8 holds is open and dense.

Proof. This set is clearly open. It remains to prove that it is dense. Notice that the set Σ′

of ω ∈ Σ coding for a point with dense orbit in Λ(λ) is dense in Σ and does not depend

on λ. As each X̃ω is a hypersurface, the set ∪ω∈Σ′X̃ω is dense in M̃ . Let ω ∈ Σ′, λ ∈ X̃ω

and let Γ be a small neighborhood of xω(λ) in W u
p(λ),loc. For n ≥ 1 large enough, its image

f2n
λ (Γ) contains a vertical graph in U− and thus, as we have seen when M̃ was chosen,

it intersects W s
p(λ). As the graph is vertical, the intersection is transverse. Moreover,

we obtain in this way several different intersection points. Actually, the orbit of xω(λ) is
dense in Λ(λ) and, by the blender property, the projection on the first coordinate of this
set contains D. This, combined to the fact that the graphs above are tangent to Cρ with
ρ > 100, ensures that several of these intersection points are different from p(λ).

Finally, all the dynamics above stay in U− which is disjoint from the critical set of fλ,
by assumption on M̃ . �
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4.4. Tangencial dynamics. In this part, we will prove that a property, which is robust
in the C1-topology and which implies iii) in Assumption 10, holds generically in the open

set M̃ ⊂ CNk
d obtained in § 4.3.

To fix some notations, let λ ∈ M̃ and gλ := f2
λ . Since Λ(λ) is a hyperbolic set for gλ

with a dominated splitting, to each history x̂(λ) = (xn)n≤0 in the natural extension Λ̂(λ)
is associated a strong unstable subspace Euux̂(λ). This subspace is simply obtained by

(11) Euux̂(λ) := lim
n→∞

Dx−ng
n
λE

v = lim
n→∞

(Dx−1gλ ◦ · · · ◦Dx−ngλ)Ev.

where Ev = {(u1, . . . , uk) ∈ Ck ; u1 = 0}. The strong unstable manifold can be con-
structed in a similar way using graph transform but we will not use it. These objects
depend continuously on x̂ and holomorphically on λ ∈ M̃ . Actually, this is true as long
as the hyperbolic set can be followed, a remark that will be used in Lemma 4.12.

Observe that the natural extension Λ̂(λ) of Λ(λ) corresponds to the two-sided full shift

encoded by Σ̂ := {−1, 1}Z. For l ∈ N and n ∈ Z, we set ωn(l) = 1 if n < l and ωn(l) = −1
otherwise. If ω(l) := (ωn(l))n∈N and ω̂(l) := (ωn(l))n∈Z then xω(l)(λ) ∈ Λ(λ) is a preimage

of r(λ) by glλ and xω̂(l)(λ) ∈ Λ̂(λ) is a history of xω(l)(λ).

Lemma 4.12. The set T defined by

T :=
{
λ ∈ M̃ ; Euuxω̂(0)(λ) contains an eigenvector of Dr(λ)gλ

}
is a proper analytic subset of M̃ .

Proof. First, recall that the eigenvalues of Dr(λ)gλ are all different thus we can follow the
corresponding eigenspaces holomorphically in λ. Hence, the fact that T is analytic simply
comes from the holomorphic dependency of Euux̂(λ) on λ. It remains to prove properness,

i.e. to find λ ∈ M̃ outside T . Observe that as soon as k ≥ 3, the parameter λ1 =

(a1, α1, β1, ε1, σ1, 0) ∈ CNk
d defined in § 4.3 is in T since fλ1 is a product map on C2×Ck−2.

We perturb it as a skew product of C× Ck−1

fλ2(z, w, y) =

(
α1z + ε1w + β1zw + w

k∑
i=3

τiyi, qa1(w), σ3y3, . . . , σkyk

)
,

where λ2 := (a1, α1, β1, ε1, σ1, τ1, 0) ∈ CNk
d , with τ1 = (τi)3≤i≤k ∈ (R>0)k−2 is small enough

to have λ2 ∈ M̃ . We will deform fλ2 along a path (fγ(t))t∈[0,1] of maps of the form (10)
such that fγ(1) = fλ2 and fγ(0) does not satisfies the property defining T . Observe that

the path γ may go outside M̃ but the hyperbolic set Λ can be followed all along γ, which
is sufficient.

For t ∈ [0, 1] we define γ(t) := (a1, |α1|eit arg(α1), tβ1, |ε1|eit arg(ε1), σ1, τ1, 0). This path is

chosen in such a way that γ(0) = (a1, |α1|, 0, |ε1|, σ1, τ1, 0) is in (R+)N
k
d and that the map

gγ(t) is still expanding on V+ ∪ V− with V+ ∪ V− ⊂ gγ(t)(V+) ∩ gγ(t)(V−) since (α1, β1, ε1)
satisfies (7). In particular, the hyperbolic set Λ can be followed in a neighborhood of this
path.

From this, an important remark is that, by Lemma 4.4, r(γ(0)) = (z0, w0, 0) with w0

real close to −1 and, for l ≥ 1, xω(l)(γ(0)) = (zl, wl, 0) with wl real close to 1. Moreover,
if (z, w) ∈ DR × (V− ∪ V+) with w real then D(z,w,0)gγ(0) = (Ai,j) is a real matrix with
Ai,j = 0 if i 6= j and i 6= 1, and, with the notation w′ := qa1(w),

A1,1 = |α1|2, A2,2 = 4a2
1ww

′, A1,2 = |ε1|(|α1|+2a1w), Ai,i = σ2
i and A1,i = τi(|α1|w+σiw

′)
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for i ∈ {3, . . . , k}. From this, using that r(γ(0)) = (z0, w0, 0) with w0 close to −1 and w′0
close to 1, it is easy to see that the eigenvectors associated to r(γ(0)) are proportional to
e1 and to ei + bie1 where bi > 0 for each i ∈ {2, . . . , k}. Here, (e1, . . . , ek) is the canonical
basis of Ck. On the other hand, for each l ≥ 1, xω(l)(γ(0)) = (zl, wl, 0) with wl real close
to 1 and w′l close to −1. Hence, a vector of the form ei + cie1 with −1 ≤ ci ≤ 0 is send by
D(zl,wl,0)gγ(0) on a vector proportional to ei + c′ie1 with

c′i =
|α1|2ci + τi(|α1|wl + σiw

′
l)

σ2
i

if i ∈ {3, . . . , k} and c′2 =
|α1|2c2 + |ε1|(|α1|+ 2a1wl)

4a2
1wlw

′
l

.

In particular, since a1 and every σi are very large and |α1| < 2, |ε1| > 1/20, each c′i satisfies
−1 ≤ c′i < 0. This implies that the hyperspace Euuxω̂(0)(γ(0)), which by (11) is equal to

lim
n→∞

(
Dxω(1)(γ(0))gγ(0) ◦ · · · ◦Dxω(n)(γ(0))gγ(0)

)
Ev,

is generated by (ei + die1)2≤i≤k with di < 0. Hence, it contains none of the eigenvectors
of Dr(γ(0))gγ(0) described above. This conclude the proof. �

4.5. Verification of the assumptions. We have now all the ingredients to prove The-
orem 4.1. Let λ1, M̃ , U±, U±, V± and V± be as in § 4.3. Recall that fλ1 is of the
form

fλ1(z, w, y) =

(
α1z + ε1w + β1zw + w

k∑
i=3

τiyi, qa(w), σ3y3, . . . , σkyk

)
.

As we have said in the discussion in § 4.3 where M̃ was chosen, for each λ ∈ M̃ the
map fλ satisfies several assumptions of § 3.2. More precisely, if ρ > 0 and R > 0 as
in Lemma 4.6, then we already know that Assumptions 1, 3 and 4 hold in M̃ . This is
also true for Assumption 2 except on the point about the small Julia set Jk, which is not
necessarily well-defined for fλ, and for Assumption 6 except the part about the domain
of linearization. For this last point, since the map f2

λ restricted to V− is expanding and
injective with U− in its image so, if hλ : U− → V− denotes its inverse then we can extend
the linearization δλ on U− in an injective way using the dynamics, i.e. if x ∈ U− then
δλ(x) := (Dr(λ)f

2
λ)n ◦ δλ ◦ hnλ(x) for n ≥ 1 large enough. We will come back to the small

Julia set of Assumption 2 latter.
Assumption 5 is just a reformulation of the fact that X̃ω is a proper analytic subset of

M̃ and thus, it holds on M̃ by Lemma 4.10.
For the other assumptions, we consider a perturbation fλ̃ in M̃ ′ of fλ1 defined by

fλ̃(z, w, y) = fλ1(z, w, y) + c(zd, wd, yd3 , . . . , y
d
k),

where c ∈ C∗ is very close to 0. Observe that fλ̃ is a regular polynomial endomorphism

of Ck which is a skew product of C × Ck−1 above a product map of Ck−1. This implies
that the small Julia set Jk(fλ̃) is exactly the closure of the repelling periodic points of
fλ̃. Actually, this was proved by Jonsson [J] when k = 2 where the key ingredient is a
fibered formula for the equilibrium measure. This formula has been generalized in higher
dimension by [DT, Corollary 1.2] and thus the result of Jonsson also holds for fλ̃. In

particular, since the repelling periodic points are dense in the hyperbolic set Λ(λ̃), this

gives that Λ(λ̃) ⊂ Jk(fλ̃). As this property persists under small perturbations (see e.g.

[Du, Lemma 2.3]), Assumption 2 holds in a small neighborhood of fλ̃ in Endkd. Moreover,
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one part of the critical set of fλ̃ comes from the dynamics on the basis Ck−1. A simple
computation gives that the remaining part of this critical set is

Cλ̃ :=

{
(z, w, y) ∈ Ck ; w = −α1 + cdzd−1

β1

}
,

which is always transverse to fibers of the form {w = w0, y = y0} except when d ≥ 3

and w0 = −α1/β1. The stable manifold W s
p(λ̃)

of the saddle point p(λ̃) is an attracting

basin in the invariant fiber {w = w0, y = 0} where w0 ' −1 is the unique fixed point of
w 7→ qa1(w) + cwd in U− and thus by a classical result of Fatou it has to intersect Cλ̃
in a point of infinite orbit. Furthermore, since w0 ' −1 and −α1/β1 has large modulus,
they cannot be equal. This gives a transverse intersection between W s

p(λ̃)
and the critical

set. The skew product structure of fλ̃ and the fact that {w = w0, y = 0} is not a critical
fiber ensure that the images of this transverse intersection stay transversal. This shows
Assumptions 7 is satisfied in a small neighborhood of fλ̃.

Observe that by Lemma 4.11 and Lemma 4.12, there exists near λ̃ a small non-empty
open set Ω in Endkd ∩ M̃ ′ where, in addition to all the assumptions above, Assumption
8 holds and which is disjoint from the set T defined in Lemma 4.12. Moreover, as by
[FJ, Corollary C] when k = 2 and [DS3, Lemma 5.4.5] for k ≥ 2 the exceptional set is
generically empty (or reduced to the hyperplane at infinity in the case of regular polynomial
endomorphisms of Ck, with the same proof than [DS3, Lemma 5.4.5]), we can also assume
that it is the case for maps in Ω, i.e. that Assumption 9 holds on Ω.

Hence, all assumptions of § 3.2 are satisfied on Ω, except possibly Assumption 10. Let Ω′

a non-empty open subset of Ω. Let λ′ ∈ Ω′ be a regular point of the foliation (Ỹζ,t)(ζ,t)∈S1×R
defined just before Lemma 4.10. This lemma implies that there exists ω′ = (ω′n)n≥0 ∈ Σ

such that λ′ ∈ X̃ω′ and X̃ω′ is not contained in some Ỹζ,t. In particular, if ω = (ωn)n≥0 is

very close to ω′ then X̃ω intersects Ω′ and is not contained in some Ỹζ,t. We defined such
ω by

ωn = ω′n if n ≤ N1, ωn = 1 if N1 < n ≤ N1 +N2 and ωn = −1 if n > N1 +N2,

where N1 and N2 are two very large positive integers. The first condition ensures that ω is
close enough to ω′. The third one that the corresponding point xω(λ) ∈ Λ(λ) is a preimage

by f
2(N1+N2+1)
λ of the repelling periodic point r(λ). This gives point i) of Assumption 10

with m := 2(N1 + N2 + 1) for every λ ∈ Ω′ ∩ X̃ω. By definition of X̃ω, xω(λ) ∈ W u
p(λ),loc

on this set and thus ii) also holds. The fact that X̃ω is not contained in some Ỹζ,t implies

that iv) is satisfied on a dense subset of Ω′ ∩ X̃ω. Finally, recall Ω′ is disjoint from the
set T defined in Lemma 4.12. Recall that this implies that if ω(1) := (ωn(1))n≥0 ∈ Σ
and the history ω̂(1) := (ωn(1))n∈Z ∈ {−1, 1}Z are defined by ωn(1) = 1 if n < 1 and
ωn(1) = −1 otherwise then the image by Dxω(1)(λ)f

2
λ of the strong unstable subspace

Euuxω̂(1)(λ) associated to xω̂(1)(λ) is a generic hyperplane for Dr(λ)f
2
λ , i.e. does not contain

any eigenvector of Dr(λ)f
2
λ . On the other hand, if λ ∈ Ω′∩X̃ω and if E denotes the tangent

space of W u
p(λ),loc at xω(λ) then E is in the cone Cρ and Dxω(λ)f

2(N1+N2)
λ E is very close to

Euuxω̂(1)(λ) if N2 is large enough. Hence, Dxω(λ)f
2(N1+N2+1)
λ E is also a generic hyperplane

for Dr(λ)f
2
λ . Thus, the point iii) of Assumption 10 is satisfied for all λ ∈ Ω′ ∩ X̃ω.

In conclusion, the open set Ω verifies all the assumptions of § 3.2.
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5. The fundamental height inequalities

5.1. Adelic metrics, height functions. LetX be a projective variety, and let L0, . . . , Lk
be Q-line bundle on X, all defined over a number field K.

For any i, assume Li is equipped with an adelic continuous metric {‖ · ‖v,i}v∈MK and
we denote L̄i := (Li, {‖ · ‖v}v∈MK). Assume also L̄i is semi-positive. Fix a place v ∈ MK.
Denote by Xan

v the Berkovich analytification of X at the place v. We also let c1(L̄i)v be
the curvature form of the metric ‖ · ‖v,i on Lan

i,v.

For any closed subvariety Y of dimension q, as observed by Chambert-Loir [CL], the
arithmetic intersection number

(
L̄0 · · · L̄q|Y

)
is symmetric and multilinear with respect to

the L̄i’s and is defined inductively by(
L̄0 · · · L̄q|Y

)
=
(
L̄1 · · · L̄q|div(s) ∩ Y

)
+
∑
v∈MK

nv

∫
Y an
v

log ‖s‖−1
v,0

q∧
j=1

c1(L̄i)v,

for any global section s ∈ H0(X,L0). In particular, if L0 is the trivial bundle and ‖ · ‖v,0
is the trivial metric at all places but v0, this gives(

L̄0 · · · L̄k|Y
)

= nv0

∫
Y an
v0

log ‖s‖−1
v0,0

q∧
j=1

c1(L̄i)v0 .

When L is a big and nef Q-line bundle endowed with a semi-positive continuous adelic
metric L̄, following Zhang [Zha1], we can define hL̄(Y ) as

hL̄(Y ) :=

(
L̄q+1|Y

)
(q + 1)[K : Q] degY (L)

,

where degY (L) = (L|Y )k is the volume of the line bundle L restricted to Y .
Recall that a sequence (xi)i of points of Y (Q̄) is generic if for any closed subvariety

W ⊂ Y defined over K, there is i0 ≥ 1 such that O(xi)∩W = ∅ for all i ≥ i0. By Zhang’s
inequalities [Zha1], if hL̄ ≥ 0 on X(Q̄), if we let

e1(L̄) := sup
Z(Y

inf
x∈(Y \Z)(Q̄)

hL̄(x),

where Z ranges on strict subvarieties of Y defined over Q̄, then we have

e1(L̄) ≥ hL̄(Y ) ≥ 1

q + 1
e1(L̄).(12)

In particular, there is a generic sequence (xi)i of closed points of Y (Q̄) such that

lim inf
i→∞

hL̄(xi) ≥ hL̄(Y ) ≥ 1

q + 1
lim inf
j→∞

hL̄(xj).(13)

Let X be a projective variety defined on a number field K and let L̄ be an ample line
bundle on X endowed with an adelic semi-positive metric. Let m ≥ 1 be an integer
and, for 1 ≤ i ≤ m, let pi : Xm → X be the projection onto the i-th factor. Let
L̄m := p∗1(L̄) + · · ·+ p∗m(L̄).

We will use the next lemma.

Lemma 5.1. For any subvariety Y ⊂ X defined over K, we have

hL̄m(Y m) = m · hL̄(Y ).
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Proof. For m = 1, or if q = 0 there is nothing to prove. We can assume that L is very
ample. Fix m ≥ 2 and set q := dimY ≥ 1. For any 1 ≤ i ≤ m and any line bundles
Mq+2, . . . ,Mqm on Xm, we have(

c1(p∗iL)q+1 · c1(Mq+2) · · · c1(Mqm) · {Y m}
)

= 0.

In particular, degLm(Y m) =
(
qm
q

) (
c1(p∗1L)q · · · (c1(p∗2L) + · · ·+ c1(p∗mL))q(m−1) · {Y m}

)
,

whence

degLm(Y m) =

(
qm

q

)
degL(Y ) degLm−1

(Y m−1).

Similarly, as the arithmetic intersection product is multilinear and symmetric, if we let
πi : Xm → Xm−1 be the cancellation of the ith variable, we have

(L̄qm+1
m |Y m) =

m∑
i=1

(
qm+ 1

q + 1

)
(p∗i L̄

q+1 · π∗i L̄
q(m−1)
m−1 |Y m).

Let s1, . . . , sq+1 be sections of L such that div(s1)∩· · ·∩div(sq+1)∩Y = ∅ and let Z0 := Y

and for 1 ≤ j ≤ q, Zj := Zj−1 ∩ div(sj). Following [], as Y m = p−1
i (Y ) ∩ π−1

i (Y m−1), we
have

(p∗i L̄
q+1 · π∗i L̄

q(m−1)
m−1 |Y m) = (p∗i L̄

q · π∗i L̄
q(m−1)
m−1 |π−1

i (Y m−1) ∩ p−1
i (Z1))

+
∑
v∈MK

nv

∫
(Ym)anv

log ‖p∗i s1‖p∗i L̄,vc1(p∗i L̄)qv ∧ c1(π∗i L̄m)q(m−1)
v

which rewrites as

(p∗i L̄
q+1 · π∗i L̄

q(m−1)
m−1 |Y m) = (p∗i L̄

q · π∗i L̄
q(m−1)
m−1 |π−1

i (Y m−1) ∩ p−1
i (Z1))

+ degLm−1
(Y m−1)

∑
v∈MK

nv

∫
Y an
v

log ‖s1‖L̄,vc1(L̄)qv.

Similarly, for any 1 ≤ j ≤ q − 1 one can write

(p∗i L̄
q−j+2 · π∗i L̄

q(m−1)
m−1 |π−1

i (Y m−1) ∩ p−1
i (Zj−1)) =

(p∗i L̄
q−j+1 · π∗i L̄

q(m−1)
m−1 |π−1

i (Y m−1) ∩ p−1
i (Zj))

+ degLm−1
(Y m−1)

∑
v∈MK

nv

∫
(Zj−1)anv

log ‖sj‖L̄,vc1(L̄)q−j+1
v .

Summing up over the q + 1 terms we get

(p∗i L̄
q+1 · π∗i L̄

q(m−1)
m−1 |Y m) = degLm−1

(Y m−1) · (L̄q+1|Y ).

Together with the above, this gives

(L̄qm+1
m |Y m) = m

(
qm+1
q+1

)
degLm−1

(Y m−1) · (L̄q+1|Y ).

Since by definition,

hL̄(Y ) =
(L̄q+1|Y )

[K : Q](q + 1) degL(Y )
and hL̄m(Y m) =

(L̄qm+1
m |Y m)

[K : Q](qm+ 1) degLm(Y m)
,

the proof is complete. �
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5.2. Dynamics over number fields. Let X be a projective variety, f : X → X a
morphism and L be an ample line bundle on X, all defined over a number field K. Recall
that we say (X, f, L) is a polarized endomorphism of degree d > 1 if f∗L ' L⊗d, i.e. f∗L
is linearly equivalent to L⊗d. Let k := dimX.

It is known that polarized endomorphisms defined over the field K admit a canonical
metric. This is an adelic semi-positive continuous metric on L, which can be built as
follows: let X → Spec(OK) be an OK-model of X and L̄ be a model of L endowed with
a model metric, for example L̄ = ι∗ŌPN (1), where ι : X ↪→ PN is an embedding inducing
L and ŌPN (1) is the naive metrization. We then can define L̄ as

L̄ := lim
n→∞

1

dn
(fn)∗L̄ |K.

This metrization induces the canonical height ĥf of f : for any closed point x ∈ X(Q̄) and
any section σ ∈ H0(X,L) which does not vanish at x, we let

ĥf (x) :=
1

[K : Q] deg(x)

∑
v∈MK

∑
y∈O(x)

nv log ‖σ(y)‖−1
v ,

where O(x) is the Galois orbit of x in X. The function ĥf : X(Q̄)→ R satisfies ĥf ◦ f =

d · ĥf , ĥf ≥ 0 and ĥf (x) = 0 if and only if x is preperiodic under iteration of f , i.e. if

there are n > m ≥ 0 such that fn(x) = fm(x). Note that ĥf can also be defined as

ĥf (x) = lim
n→∞

1

dn
hX,L(fn(x)),

where hX,L is any Weil height function on X associated with the ample line bundle L.

If Y is a subvariety of dimension q ≥ 0 defined over Q̄, we define

ĥf (Y ) := hL̄(Y ) =

(
L̄q+1|Y

)
(q + 1)[K : Q] degY (L)

(observe that when Y = {x} has dimension 0, both definitions coincide i.e. both definitions

of ĥf coincide). This satisfies ĥf (f∗(Y )) = dĥf (Y ), where f∗(Y ) is the image of Y by f
counted with multiplicity as a cycle on X. In particular, if Y is preperiodic under iteration

of f , i.e. if there are n > m ≥ 0 such that fn(Y ) = fm(Y ), then ĥf (Y ) = 0.

5.3. Canonical height and height on the base. We now let (X , f,L,Y) be a dynamical
pair of degree d ≥ 2 parametrized by a smooth projective variety S, with regular part S0

Y .

Let Y0 := π|−1
Y (S0

Y). We also assume (X , f,L), Y and S are all defined over a number
field K. In what follow, we fix an embedding ι : K ↪→ C for which we define the different
bifurcation currents.

Definition 5.2. Let m ≥ dimS. If the measure µf,Y is non-zero, we define the m-higher

order canonical height Ĥ(m)
f,M(Y) of the family Y, relative to M, as

Ĥ(m)
f,M(Y) :=

Vol
(m)
f (Y)

dimY [m] · deg
(m)
f,M(Y)

.

Otherwise, we let Ĥ(m)
f,M(Y) := 0.
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Remark 5.3. (1) Observe that both Vol
(m)
f (Y) and deg

(m)
f,M(Y) are geometric quan-

tities that do not depend on the choice of a place (hence we can take another
embedding ι : K ↪→ C).

(2) If dimS = 1, we have Ĥ(1)
f (Y) = ĥfη(Yη),

(3) The quantity Ĥ(m)
f,M(Y) is well-defined by Proposition 1.7 and satisfies Ĥ(m)

f,M(Y) > 0

for all m ≥ dimS if and only if µf,Y is non-zero.

We prove here the following which is inspired from [GH, Theorem 1.4 and Proposi-
tion 10.1] and [DGH, Theorem 1.6]:

Theorem 5.4. Assume that µf,Y is non-zero. Let m ≥ dimS andM be any ample Q-line

bundle on S of volume 1. Then, for any 0 < ε < Ĥ(m)
f,M(Y), there is a non-empty Zariski

open subset U ⊂ (Y [m])0 and a constant C ≥ 1 depending only on (X , f,L), Y, M, m and
ε such that

hS,M(π[m](x)) ≤ 1

Ĥ(m)
f,M(Y)− ε

m∑
j=1

ĥfπ(xj)(xj) + C,

for any x = (x1, . . . , xm) ∈ U(Q̄).

We need here to mention that one can use the theory of adelic line bundles on quasi-
projective varieties set up by Yuan and Zhang [YZ] to obtain such an inequality (see
Theorem 6.2.2 therein). However, the proof we give here is relatively elementary (and
does not require to use the elaborate notion of nef adelic line bundle) and allows to have
explicit constants in the inequality.

Proof. Fix 0 < ε < Ĥ(m)
f,M(Y) and C ≥ 1. Take n ≥ 1 such that dn

(
Ĥ(m)
f,M(Y)− ε/2

)
> 1

and C ≤ dnε/4. Choose integers M,N ≥ 1 such that

N
(
dnĤ(m)

f,M(Y)− C
)
> M ≥ Ndn

(
Ĥ(m)
f,M(Y)− ε/2

)
.

We use Lemma 1.8: increasing n if necessary, if Y(m)
n := (F

(m)
n )∗(ψ

(m)
n )∗Y [m], we deduce

from Lemma 1.9 that the quantity(
{Y(m)

n } ·
(
Nc1(L[m])

)dimY [m]
)

dimY [m]
(
{Y(m)

n } ·
(
Nc1(L[m])

)dimY [m]−1 ·
(
Mc1(π∗[m]M)

))
is bounded from below by N

M

(
dnĤ(m)

f,M(Y)− C
)
> 1. Let Yn := (ψ

(m)
n )∗(Y [m]), Ln :=(

(Fn)∗L[m]
)
|Yn , and Mn :=

(
(π[m] ◦ ψ

(m)
n )∗M

)
|Yn . By construction, the line bundles Ln

and Mn are nef on Yn and the above inequality implies(
(NLn)dimYn

)
> dimYn

(
(MMn) · (NLn)dimYn−1

)
by the projection formula. We thus can apply Siu’s bigness criterion [Laz, Theorem 2.2.15]
and find that NLn −MMn is a big line bundle on Yn. In particular, there exist ` ≥ 1
and a non-empty Zariski open set Un ⊂ Yn such that for any x ∈ Un(Q̄),

hYn,`(NLn−MMn)(x) ≥ −C1
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for some constant C1 depending only on n. Now we use successively functorial properties
of Weil height functions, see e.g. [HS]. First, we find that for any y ∈ Un(Q̄),

hYn,`(NLn−MMn)(y) = `
(
NhY [m],L[m](Fn(y))−MhS,M(π[m] ◦ ψn(y)

)
+O(1).

Since Fn = (f [m])n ◦ψ(m)
n on the non-empty Zariski open set Un∩ (ψ

(m)
n )−1((Y [m])0), since

ψn is an isomorphism from Un ∩ (ψ
(m)
n )−1((Y [m])0) to its image U1 := ψ

(m)
n (Un)∩ (Y [m])0,

and since Y [m] is a subvariety of X [m] we deduce that, for any x ∈ U1(Q̄),

hYn,`(NLn−MMn)(ψ
−1
n (x)) = `

(
NhX [m],L[m](fn(x))−MhS,M(π[m](x))

)
+O(1).

In particular, the above gives

hX [m],L[m]((f [m])n(x)) ≥ M

N
hS,M(π[m](x))− C2

≥ dn
(
Ĥ(m)
f,M(Y)− ε/2

)
hS,M(π[m](x))− C2,

for any x ∈ U(Q̄), where C2 is a constant depending on n. This rewrites as

1

dn
hX [m],L[m]((f [m])n(x)) ≥

(
Ĥ(m)
f,M(Y)− ε/2

)
hS,M(π[m](x))− C3,

for any x ∈ U1(Q̄), where C3 depends on n. We now use an estimate of Call and Silver-
man [CS, Theorem 3.1]: there is a constant C4 > 0 depending only on (X , f,L) and M
such that for any x ∈ X 0(Q̄),∣∣∣ĥfπ(x)(x)− hX ,L(x)

∣∣∣ ≤ C4 (hS,M(π(x)) + 1) .

By functorial properties of heights

hX [m],L[m](x) =
m∑
j=1

hX ,L(xj) +O(1), x = (x1, . . . , xm) ∈ X [m](Q̄),

and the construction of the canonical height gives

ĥ
f
[m]
π[m](x)

(x) =

m∑
i=1

ĥfπ(xi)(xi), x = (x1, . . . , xm) ∈ X [m](Q̄),

since π[m](x) = π(xi) for any i by construction. Applying this inequality to (f [m])n(x) and

using that ĥfπ(xi)(f
n(xi)) = dnĥfπ(xi)(xi) for any i, we find

m∑
j=1

ĥfπ(xj)(xj) ≥
(
Ĥf,M(Y)− ε

2
− C4

dn

)
hS,M(π[m](x))− C3 −

C4

dn
,

for any x = (x1, . . . , xm) ∈ U1(Q̄). Up to increasing n, we can assume C4 ≤ dnε/2, which
gives the expected inequality. �

As an immediate application of Theorem 5.4, we have

Corollary 5.5. Fix m ≥ dimS and assume Vol
(m)
f (Y) > 0. Let M be any ample Q-line

bundle on S of volume 1 and let 0 < ε < Ĥ(m)
f,M(Y). There is a non-empty Zariski open
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subset U ⊂ Y0 and a constant C ≥ 1 depending only on (X , f,L), Y, M, m and ε such
that

hS,M(π(x)) ≤ m

Ĥ(m)
f,M(Y)− ε

ĥfπ(x)(x) + C, x ∈ U(Q̄).

Proof. Fix M and 0 < ε < Ĥ(m)
f,M(Y) and let B be the set of points x ∈ Y such that

hS,M(π(x)) >
m

Ĥ(m)
f,M(Y)− ε

ĥfπ(x)(x) + C

where C is the constant given by Theorem 5.4. We deduce that

∀(x1, . . . , xm) ∈ B[m], hS,M(π[m](x)) >
1

Ĥ(m)
f,M(Y)− ε

m∑
j=1

ĥfπ(xj)(xj) + C,

so that B[m] is necessarily contained in a strict Zariski closed subset of Y [m] by Theorem 5.4,
whence B is contained in a strict Zariski closed subset of Y. �

5.4. General dynamical heights as moduli heights. Let (X , f,L,Y) be a dynamical
pair of degree d ≥ 2 parametrized by a smooth projective variety S, with regular part S0

Y ,
all defined over a number field K.

When Z is a subvariety of S0
Y , we let YZ := π|−1

Y (Z) and we define (XZ , fZ ,LZ) as the

family of polarized endomorphisms induced by restriction of (X , f,L) to XZ := π−1(Z).

We prove here the following

Theorem 5.6. let (X , f,L), S and Y be all defined over a number field K. Fix an
embedding ι : K → C for which we define the different bifurcation currents and assume
that µf,Y 6= 0. Then, there is a non-empty Zariski open subset U ⊂ S0

Y such that for any
ample height h on U , there are constants C1, C2 > 0 and C3, C4 ∈ R such that

C1h(t) + C3 ≤ ĥft(Yt) ≤ C2h(t) + C4 for all t ∈ U(Q̄).

Moreover, for any archimedean place v ∈ MK, any irreducible component Z of S0
Y \ U

satisfies T
(dimZ)
f,Y,v ∧ [Z] = 0.

We are now in position to prove Theorem A.

Proof of Theorem A. We work at the archimedean place of Q. It follows from Theorem C
that the bifurcation measure µf,Crit is non-zero on M k

d (C), whence it is sufficient to apply
Theorem 5.6 to conclude the proof of Theorem A. �

The proof of Theorem 5.6 splits into two distinct parts that are summarized in two
Propositions below. We first use Zhang’s inequalities over number fields to deduce the
following from Corollary 5.5:

Proposition 5.7. Let M be an ample Q-line bundle on S of volume 1 and assume

Vol
(dimS)
f (Y) > 0. There are constants C1 > 0 and C2 ≥ 1 depending only on (X , f,L,Y)

and M and a non-empty Zariski open subset V ⊂ S0
Y defined over Q̄ such that

hS,M(t) ≤ C1ĥft(Yt) + C2, t ∈ V (Q̄).

Moreover, for any irreducible component Z of S0
Y \ V , we have VolfZ (YZ) = 0.
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Proof. Let q := dimYη. Fix 0 < ε < Ĥ(dimS)
f,M (Y). Let U be the Zariski open subset in

Corollary 5.5, let V be the set of t ∈ π(U) so that Ut := U ∩ Yt is non-empty a Zariski
open subset of Yt. The set V is a Zariski open subset of S0 and for any t ∈ V (Q̄), we have

hS,M(t) ≤ dimS

Ĥf,M(Y)− ε

(
ĥft(x) + C

)
, x ∈ Ut(Q̄).

Taking the infimum of ĥft(x) over x ∈ Ut(Q̄) and using Zhang’s inequalities (13) gives

hS,M(t) ≤ dimS

Ĥf,M(Y)− ε

(
(q + 1)ĥft(Yt) + C

)
.

This is the wanted inequality, but we may have restricted too much the open set.
To conclude, we can proceed exactly the same way on any irreducible component Z

of S0
Y \ V , where Vol

(dimZ)
fZ

(YZ) > 0. In finitely many steps, we end with the expected

result. �

We now use another description of the height hL̄(Yt), when t ∈ S0
Y(Q̄), using Chow

forms as in [H]. The next is probably well-known, but we include a proof for the sake of
completeness.

Lemma 5.8. Let S be a projective variety, let π : Y → S be a surjective morphism, both
defined over a number field K. Let L̄ be a relatively ample line bundle on Y. Let S0

Y ⊆ S

be a Zariski open set such that π is flat over S0
Y .

For any ample line bundle M on S, there are constants C1, C2 > 0 such that

hL̄(Yt) ≤ C1hS,M(t) + C2, t ∈ S0
Y(Q̄).

Proof. Up to replacing L by a large multiple and up to changing the metrization on L, we
may assume that there is an embedding ι : Y ↪→ PNS such that L̄ = ι∗ŌPN (1), so that

hL̄(Yt) = hPN (ι∗(Yt)), for all t ∈ S0
Y(Q̄),

where hPN is the naive height function on PN . This is where Chow forms are used, to give
a different description of hPN (Yt), which makes easier the expected inequality.

For any irreducible subvariety Y ⊂ PN of dimension q ≥ 1, in the Grassmannian
G(N − k − 1, N) of linear subspaces of dimension N − k − 1 of PN , the set

ZY := {V ∈ G(N − k − 1, N) ; V ∩ Y 6= ∅}

is an irreducible hypersurface. Moreover, in the Plücker coordinates, we have ZY =
{RY = 0}, where RY is a homogeneous polynomial satisfying the following properties,
see, e.g., [DS1, H]:

(1) if Y is defined over Q̄, then RY is also defined over Q̄,
(2) deg(RY ) = deg(Y ),
(3) hPN (Y ) = h([a0 : · · · : aM ]), where a0, . . . , aM are the coefficients of RY .

Coming back to our situation, the above gives

hL̄(Yt) = h([a0(t) : · · · : aM (t)]), t ∈ S0
Y(Q̄).

We now observe that the map A : t ∈ S0
Y 7→ [a0(t) : · · · : aM (t)] ∈ PM is regular and

defined over Q̄, i.e. A ∈ Q̄[S0
Y ]. This observation is true by construction of the Chow

form, see, e.g., [SZ, §3]. �
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As an application of Call and Silverman’s fundamental work [CS] and from Lemma 5.8,
we prove Theorem 5.6:

Proof of Theorem 5.6. The left hand side inequality is proved in Proposition 5.7. We
now prove the right hand side inequality. Fix any closed point t ∈ S0(Q̄). By Zhang’s
inequality (13), if (xj) is a generic sequence of closed points of Yt(Q̄), we have

ĥft(Yt) ≤ lim inf
j→∞

ĥft(xj) and
1

q + 1
lim inf
j→∞

hL̄(xj) ≤ hL̄(Yt).

We now apply [CS, Theorem 3.1]: there exists constants C,C ′ > 0 depending only on
(X , f,L,Y) and on M such that∣∣∣ĥft(x)− hL̄(x)

∣∣∣ ≤ ChM(t) + C ′,

for all x ∈ Yt(Q̄). The above implies

ĥft(Yt) ≤ (q + 1)hL̄(Yt) + ChM(t) + C ′.

The conclusion follows from Lemma 5.8 above. �

6. Two dynamical equidistribution results

6.1. Good height functions on quasi-projective varieties. Let V be a smooth quasi-
projective variety defined over a number field K and let K ↪→ C be an embedding and let
h : V (Q̄)→ R be a function. A sequence (Fi)i of Galois-invariant finite subsets of V (Q̄) is

• generic if for any subvariety Z ⊂ V defined over K, there is i0 such that Fi∩Z = ∅
for i ≥ i0, and
• h-small if h(Fi) := 1

#Fi

∑
x∈Fi h(x)→ 0, as i→∞.

As in [Ga3], we say h is a good height at the complex place if for any n ≥ 0, there is a
projective model Xn of V together with a birational morphism ψn : Xn → X0 which is an
isomorphism above V and a big and nef Q-line bundle Ln on Xn endowed with an adelic
semi-positive continuous metrization L̄n, such that the following holds :

(1) For any generic h-small sequence (Fi)i of Galois-invariant finite subsets of V (Q̄),
the sequence εn({Fi}i) := lim supi hL̄n(ψ−1

n (Fi))− hL̄n(Xn) satisfies εn({Fi})→ 0
as n→∞,

(2) the sequence of volumes vol(Ln) converges to vol(h) > 0 as n → ∞ and if
c1(L̄n) is the curvature form of L̄n on Xn(C), then the sequence of finite measures(
vol(Ln)−1(ψn)∗c1(L̄n)k

)
n

converges weakly on V (C) to a probability measure µ,
(3) If k := dimV > 1, for any ample line bundle M0 on X0 and any adelic semi-positive

continuous metrization M̄0 on M0, there is a constant C ≥ 0 such that(
ψ∗n(M̄0)

)j · (L̄n)k+1−j ≤ C,

for any 2 ≤ j ≤ k + 1 and any n ≥ 0.

We say that vol(h) is the volume of h and that µ is the measure induced by h over the
complex numbers.

The first author proved in [Ga3, Theorem 1] the next result:
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Theorem 6.1. For any h-small and generic sequence (Fm)m of Galois-invariant finite
subsets of V (Q̄), the probability measure µFm on V (C) which is equidistributed on Fm
converges to µ in the weak sense of measures, i.e. for any ϕ ∈ C 0

c (V (C)), we have

lim
m→∞

1

#Fm

∑
y∈Fm

ϕ(y) =

∫
V (C)

ϕµ.

6.2. A dynamical relative equidistribution Theorem. When π : A → S is a family
of abelian varieties defined over a number field K, where S is a smooth projective variety,
and Y ⊂ A is a non-degenerate subvariety also defined over K, Kühne [K] proposes and
proves a Relative Equidistribution Conjecture which, in turn, says that if there is a generic

sequence {xi}i in Y0(Q̄) with ĥA(xi)→ 0, then the measure µxi on Y0(C) equidistributed
on the Galois orbit O(xi) converges weakly on Y0(C) to a given probability measure µ.

We want here to prove the next dynamical generalization of Kühne’s Relative Equidis-
tribution Conjecture:

Theorem 6.2 (Dynamical Relative Equidistribution). Let (X , f,L) be a family of polar-
ized endomorphisms parametrized by a smooth projective variety S and let Y ⊂ X be a
family of subvarieties of X . Assume µf,Y is non zero on S0(C).

Then for any m ≥ dimS and any ϕ ∈ C 0
c ((Y [m])0(C),R) and any generic and ĥf [m]-

small sequence {Fi}i of Galois invariant subsets of (Y [m])0(Q̄), we have

lim
i→∞

1

#Fi

∑
x∈Fi

ϕ(x) =
1

Vol
(m)
f (Y)

∫
(Y [m])0(C)

ϕ T̂ dimY [m]

f [m] .

As in section 6.1, we could have used the theory of adelic line bundles by Yuan and
Zhang [YZ] (see Theorem 6.2.3 therein) and again, we do not use the full strength of their
theory here.

Proof. We fix an archimedean place of K and a corresponding embedding K ↪→ C. By

Theorem 6.1, all there is to prove is that ĥf [m] is a good height function on (Y [m])0 and

to show its induced measure on (Y [m])0(C) is indeed T̂ dimY [m]

f [m] .

Let M be an ample Q-line bundle on S of volume 1 and let L0 := L[m] + π∗[m]M. The

line bundle L0 is ample on X [m]. Recall Call and Silverman’s result [CS, Theorem 3.1]
guarantees the existence of C ≥ 1 such that∣∣∣ĥf (x)− hX ,L(x)

∣∣∣ ≤ C (hS(π(x)) + 1) ,

for all x ∈ X 0(Q̄). As in the proof of Theorem 5.4, using that ĥf ◦ f = d · ĥf , we deduce
that up to changing the constant C, we have∣∣∣∣ĥf [m](x)− 1

dn
hX [m],L[m]((f [m])n(x))

∣∣∣∣ ≤ C

dn
(
hS(π[m](x)) + 1

)
,

for any x ∈ (X [m])0(Q̄) and any n ≥ 0. As ((f [m])n)∗L0 = dnL[m] + π∗[m]M, this implies∣∣∣∣ĥf [m](x)− 1

dn
hX [m],L0((f [m])n(x))

∣∣∣∣ ≤ C

dn
(
hS(π[m](x)) + 2

)
,
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for any x ∈ (X [m])0(Q̄) and any n ≥ 0. We now use Theorem 5.4: there is a non-empty

Zariski open set V ⊂ (Y [m])0 such that for any x ∈ V(Q̄), we have

hS(π[m](x)) ≤ 2

Ĥ(m)
f,M(Y)

(
ĥf [m](x) + 1

)
.

We thus have a constant C2 > 0 such that for any x ∈ V(Q̄) and any n ≥ 0,∣∣∣∣ĥf [m](x)− 1

dn
hX [m],L[m]((f [m])n(x))

∣∣∣∣ ≤ C2

dn

(
ĥf [m](x) + 1

)
.(14)

We now use Lemma 1.8: let Fn, ψn : Xn → X [m] be such that Fn = (f [m])n ◦ ψn on
ψ−1
n (X 0) with ψn birational. We also let πn : Xn → S be the structure morphism induced

by π[m], i.e. such that πn = π[m] ◦ ψn. Choose a model metric M̄ on M with hM̄ ≥ 0 on

S(Q̄). We endow L with a metrization L̄ coming from the embedding ι : X ↪→ PN ×S for
which (a multiple) of L is ι∗ŌPN (1), where ŌPN (1) is the naive metrization. Define

L̄0 := L̄[m] + (π[m])
∗M̄.

We then let Yn := ψ−1
n (Y [m]) and

L̄n :=
1

dn
(
F ∗nL̄0

)
|Yn =

1

dn

(
F ∗nL̄[m]

)
|Yn +

1

dn
(π∗nM̄)|Yn , n ≥ 0.

By construction the map Fn is a generically finite morphism. Since L̄0 is an adelic semi-
positive continuous ample line bundle, L̄n is thus an adelic semi-positive continuous big
and nef Q-line bundle on Yn. Moreover, by construction, we have

hYn,L̄n(ψ−1
n (x)) =

1

dn
hX [m],L0((f [m])n(x)),

for any n ≥ 0 and any x ∈ (Y [m])0(Q̄). Note also that, by construction, hYn,L̄n ≥ 0 on

Yn(Q̄), so that [Ga3, Lemma 6] gives

hL̄n(Yn) ≥ 0.

We combine this inequality with the inequality (14): this implies that for any generic

sequence {Fi}i of Galois invariant subsets of (Y [m])0(Q̄) with ĥf [m](Fi)→ 0, we have

lim sup
i→∞

(
hYn,L̄n(ψ−1

n (Fi))− hYn,L̄n(Yn)
)
≤ lim sup

i→∞
hYn,L̄n(ψ−1

n (Fi)) ≤ 2
C2

dn
.

We now let ω and ρ be the respective curvature forms ω := c1(L̄|Y) and ρ = c1(M̄) on
Y(C) and S(C) respectively. Then ω is a smooth form on Y(C) representing c1(L|Y), and if

we denote as before pj : Y [m] → Y the projection onto the j-th factor of the fiber-product,

the curvature form of L̄n satisfies as forms on (Y [m])(C):

c1(L̄n)dimY [m]
= d−n dimY [m]

ψ∗n

(
((f [m])n)∗

(
p∗1(ω) + · · ·+ p∗m(ω) + π∗[m](ρ)

)dimY [m]
)

so that, if ωm := p∗1(ω) + · · ·+ p∗m(ω), we have as measures on (Y [m])(C):

(ψn)∗

(
c1(L̄n)dimY [m]

)
= d−n dimY [m]

(
((f [m])n)∗

(
ωm + π∗[m](ρ)

)dimY [m]
)
.
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Now, as d−n((f [m])n)∗ωm converges to T̂f [m] with a uniform convergence of local potentials

and as we have ((f [m])n)∗π∗[m](ρ) = π∗[m](ρ) by construction, the following holds in the weak

sense of measures on (Y [m])(C):

d−ndimY [m]

(
((f [m])n)∗

(
ωm + π∗[m](ρ)

)dimY [m]
)
→ T̂ dimY [m]

f [m] .

Finally, the volume of Ln can be computed as

degYn(Ln) = Vol
(m)
f (Y) +O

(
1

dn

)
.

Indeed, by definition of L0 and by Lemma 1.2, we find

degYn(Ln) =
(
c1(Ln)dimY [m] · {Yn}

)
=
(
d−n dimY [m]

(Fn)∗c1(L0)dimY [m] · {Y [m]}
)

=
(
d−ndimY [m]

(Fn)∗c1(L[m])dimY [m] · {Y [m]}
)

+O

(
1

dn

)
= Vol

(m)
f (Y) +O

(
1

dn

)
.

Our assumption that Vol
(m)
f (Y) > 0 thus implies lim

n→∞
degYn(Ln) = Vol

(m)
f (Y) > 0.

To prove that ĥf [m] is a good height function on (Y [m])0(Q̄), the last thing to check is

condition (3) introduced in Section 6.1. Let πn : Yn → S be the morphism induced by

π[m] : Y [m] → S.

Let M̄0 be an ample adelic semi-positive continuous line bundle on Y0. Then ψ∗nM̄0

is a big and nef Q-line bundle on Yn and ψ∗nM̄0 is a semi-positive adelically metrized
line bundle on Yn. Let Ē := d−1F ∗1 L̄ − ψ∗1L̄. Then, there is D̄ effective on S such that
−d−1π∗1D̄ ≤ Ē ≤ d−1π∗1D̄.

By construction, we can assume there is a birational morphism φn : Yn+1 → Yn with
πn ◦ φn+1 = πn+1 and that ψn+1 = ψn ◦ φn+1. Without loss of generality, we can also
assume ψn = φ1 ◦ · · · ◦ φn and there is a morphism gn : Yn+1 → Y1 such that

φ1 ◦ gn = Fn ◦ φn+1 and F1 ◦ gn = Fn+1 on Yn+1.

We have d−ng∗n(Ē) ≤ d−(n+1)g∗nπ
∗
1D̄ = d−(n+1)π∗n+1D̄. In particular, one sees that

L̄n+1 − φ∗n+1L̄n =
1

dn
g∗n
(
Ē
)

+

(
1

dn+1
− 1

dn

)
π∗n+1(M̄)

≤ 1

dn+1
π∗n+1(D̄ + M̄).

Whence L̄n+1 ≤ φ∗n+1(L̄n + d−(n+1)π∗n(D̄ + M̄)). An immediate induction gives

L̄n ≤ ψ∗n
(
L̄0 +

d

d− 1
π∗[m](D̄ + M̄)

)
.(15)
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Let P := dimY [m] and pick 0 ≤ ` ≤ P + 1. For all n ≥ 0, (15) gives((
ψ∗n(M̄0)

)` · (L̄n)P+1−`
∣∣∣Yn) ≤ ((ψ∗n(M̄0)

)` · ψ∗n(L̄0 +
d

d− 1
π∗[m](D̄ + M̄)

)P+1−`
∣∣∣∣∣Yn

)

≤

((
M̄0

)` · (L̄0 +
d

d− 1
π∗[m](D̄ + M̄)

)P+1−`
∣∣∣∣∣Y [m]

)
,

where we used the projection formula and that (ψn)∗(Yn) = Y [m]. This proves hypothesis
(3) of section 6.1 is satisfied as the last quantity is independent of n and the proof of
Theorem 6.1 is complete. �

6.3. Parametric equidistribution. For any finite Galois invariant subset F ⊂ S0(Q̄),
we define hf,Y(F ) as

hf,Y(F ) :=
1

#F

∑
t∈F

ĥft(Yt).

As usual, we say a sequence Fi of finite Galois invariant subsets of S0(Q̄) is hf,Y-small if
hf,Y(Fi) → 0. Using Zhang inequalities over number fields, we can deduce the following
from Theorem 6.1.

Corollary 6.3. Let (X , f,L,Y) be a dynamical pair parametrized by a smooth projective

variety S with regular part S0, all defined over a number field K. Assume Vol
(dimS)
f (Y) > 0.

Assume also there is a generic and hf,Y-small sequence {Fi}i of finite Galois invariant
subsets of S0(Q̄). Then for any ϕ ∈ C 0

c (S0(C),R), we have

lim
i→∞

1

#Fi

∑
t∈Fi

ϕ(t) =

∫
S0(C)

ϕ
µf,Y

Volf (Y)
.

Proof. Fix m ≥ dimS and fix i and let t ∈ Fi. Zhang’s inequalities (13) imply there exists

a generic sequence {x(t)
j }j of Y

[m]
t (Q̄) such that we have

lim sup
j→∞

ĥf [m](x
(t)
j ) ≤ (q + 1)ĥ

f
[m]
t

(Y
[m]
t ) .

For any i, j, we define a finite Galois invariant subset Zij of (Y [m])0(Q̄) by letting

Zij :=
⋃
t∈Fi

O(x
(t)
j ).

By the above, and by Lemma 5.1, we deduce that

lim inf
j→∞

ĥf [m](Zij) ≤ (q + 1)hf [m],Y [m](Fi) = m(q + 1) · hf,Y(Fi).

Take εi > 0 such that εi → 0 as i→∞ and such that (q + 1)2m · hf,Y(Fi) ≤ εi for any i.
For any i ≥ 1, there is an infinite sequence (jn(i+ 1))n, extracted from (jn(i))n such that,

for any n ≥ 0, we have ĥf [m](Zijn(i)) ≤ 2εi. We deduce there exists a sequence {Zi}i of

finite Galois invariant finite subsets of (Y [m])0(Q̄) such that π[m](Zi) = Fi and such that

for any t ∈ Fi, we have O(x
(t)
j(i)) ⊂ π

−1
[m]{t} for some j(i) ≥ j0(i). Moreover, by construction

we can choose Zi generic, and we have

0 ≤ 1

#Zi

∑
x∈Zi

ĥf [m](x) ≤ 2εi.
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As εi → 0 and {Zi}i is generic, Theorem 6.2 implies

1

#Zi

∑
x∈Zi

δx,v → µv,

where µv is a probability measure on (Y [m])0,an
v which satisfies

(π[m])∗(µv) = µf,[Y],v(S
0,an
v )−1µf,[Y],v,

when v is archimedean. Let νv := (π[m])∗(µv) and take ϕ ∈ C 0
v (S0,an

v ,R). Then

1

#Fi

∑
t∈Fi

ϕ(t) =
1

#Fi

∑
t∈Fi

1

#O(x
(t)
j(i))

∑
x∈O(x

(t)
j(i)

)

ϕ(π[m](x)) =
1

#Zi

∑
x∈Zi

ϕ(π[m](x)).

We now use that νv = (π[m])∗(µv) so that∫
S0,an
v

ϕνv =

∫
(Y [m])0,anv

(ϕ ◦ π[m])µv.

Finally, if v is archimedean, since (π[m])∗(µv) =
(
µf,[Y],v(S

0,an
v )

)−1
· µf,Y,v, we have νv =(

µf,Y,v(S
0,an
v )

)−1
· µf,Y,v and the proof is complete. �

7. Sparsity and uniformity: proof of the main results

We are now interested in applying all the above results in two specific situations, where
we study the variations of the dynamics of the critical set.

7.1. Sparsity of PCF maps of Pk. We focus the universal family

f : Pk
M k
d
−→ Pk

M k
d

which is a family (PkS , f,OPk(1)) of degree d endomorphisms of Pk parametrized by a

projective model S of M k
d with regular part M k

d – if we follow the notations introduced
above – which is defined over Q, see § 2.1.

The critical variety Crit(f) ( PkS satisfies π(Crit(f)) = S, where π : PkS → S is the
canonical projection, and π|Crit(f) is flat and projective over a Zariski open subset S0 ⊆
M k

d . Moreover, for any t ∈ S0, the fiber Crit(ft) = π|−1
Crit(f)(t) is the critical locus of ft.

Moreover, up to reducing the open set S0, we can assume Crit(ft) is irreducible for all
t ∈ S0.

We are now in position to prove Theorem B.

Proof of Theorem B. By [PST], there exists a closed subvariety Z ( Endkd such that, for

any field, the natural projection Π : Endkd \ Z → M k
d \ Π(Z) is a principal PGL(k + 1)-

bundle, whence the set of PCF maps f ∈ Endkd is Zariski dense in Endkd if and only if
their conjugacy classes are Zariski dense in M k

d (see also [Si1]). We again work at the
archimedean place of Q. To prove Theorem B, we proceed by contradiction. Assume PCF
parameters are Zariski dense in M k

d . By Proposition 5.7, the critical height dominates

an ample height outside of a proper closed subvariety V ( M k
d of M k

d , whence all classes

of PCF maps [f ] ∈ U := M k
d \ V are of bounded height. By definition, all irreducible

components of the set {[f ] ∈ U(C) : f is PCF} are defined over Q̄. In particular, if such
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a component Z had dimension ` > 0, then we would have hCrit ≡ 0 on Z(Q̄), whence
hM k

d
≤ C on Z(Q̄). This is a contradiction. Whence the PCF classes [f ] ∈ U(C) are

countable and defined over Q̄.
We thus can find a generic sequence (tn)n∈N of PCF parameters tn ∈M k

d (Q̄). Let µn be

the measure of M k
d (C) equidistributed on the Galois orbit O(tn) of tn. By the parametric

equidistribution Theorem (see Corollary 6.3), we have

µn :=
1

Card(O(tn))

∑
t∈O(tn)

δt → µf,Crit, as n→∞.

In particular, in the analytic topology of M k
d (C), the support of µf,Crit is accumulated by

PCF classes. In particular, if supp(µf,Crit) has non-empty interior, then PCF parameters

are dense in it. We use again Theorem C: there exists a non-empty open set Ω ⊂M k
d (C)

contained in supp(µf,Crit) which contains no PCF parameters. This is a contradiction. �

7.2. Height gap and uniformity for regular maps of the affine space. In this
section, we focus on the case when X = Pk ×S and where there is a hyperplane H∞ ⊂ Pk
such that f−1

t (H∞) = H∞ for all t ∈ S0. We call such a family a family of regular
polynomial endomorphisms of the affine space Ak, see [BJ]. Choosing an affine chart,
we can assume the hyperplane H∞ is the hyperplane at infinity of Ak in Pk. When
(Pk × S, f,OPk(1)) is such a family of regular polynomial endomorphisms, we let

Gft(z) = Gf (z, t) := lim
n→∞

1

dn
log+ ‖fnt (z)‖,

for all z ∈ Ck and all t ∈ S0(C).
We let Y ⊂ Pk ×S be an irreducible hypersurface that projects surjectively onto S and

which intersects properly H∞×S. Up to reducing the Zariski open set S0, we can assume
Y is flat over S0 and Yt 6= H∞ for all t ∈ S0.

Definition 7.1. The polynomial bifurcation measure of the pair (Pk × S, f,OPk(1),Y) is
the Monge-Ampère measure associated to the function Gf,Y : S0(C)→ R+ defined by

Gf,Y(t) :=

∫
Ck
Gft(dd

cGft(z))
k−1 ∧ [Yt], t ∈ S0(C).

We denote by µpol
fY := (ddcGf,Y)dimS this measure.

The measure µpol
fY is perfectly adapted to detect phenomena which occur in the affine

space. However, it does not in general allow to collect all the informations that µf,Y
carries. However, as measures on S0, we clearly have

µf,Y ≥ µpol
f,Y .

We now prove here the following which is a sufficient condition to get a height gap, and
then to deduce uniformity in a Bogomolov-type statement.

Theorem 7.2. Let (Pk × S, f,OPk(1)) be a family of regular polynomial endomorphisms
of degree d of the affine space parametrized by S, all defined over a number field and let
Y ⊂ Pk × S be an irreducible hypersurface such that π|Y : Y → S is surjective which
intersects properly H∞×S. Assume there is a non-empty analytic open subset Ω ⊂ S0(C)

that is contained in supp(µpol
f,Y).
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Then there exists Z ( S Zariski-closed, ε > 0 and an integer N ≥ 1 such that for all
t ∈ (S0 \ Z)(Q̄), there exists Wt ( Yt with deg(Wt) ≤ N and such that

{z ∈ Yt(Q̄) : ĥft(z) ≤ ε} ⊂Wt.

Remark 7.3. By Zhang’s inequalities (12), this in particular implies that

ĥft(Yt) ≥
ε

k
> 0, for all t ∈ (S0 \ Z)(Q̄).

For our proof, we rely on the next lemma, which is of purely complex analytic nature.

Lemma 7.4. Let (Pk×M,f,OPk(1)) be a complex family of regular polynomial endomor-
phisms of the affine space of degree d parametrized by S of dimension m. Assume there

exists a non-empty open subset Ω ⊂ supp(µpol
f,Y). Then∫

Ck(m+1)×S
Gf [m+1](ddcGf [m+1])km+k−1 ∧ [Y [m+1]] > 0.

Proof. We denote by pi : (Pk)m+1 × S → Pk × S the projection onto the i-th factor
of the fiber product and by πi : (Pk)m+1 × S → (Pk)m × S the projection consisting

in forgetting the i-th factor. By construction f [m] and f [m+1] are families of regular
polynomial endomorphisms of the affine spaces Akm and Ak(m+1) respectively. Moreover,
for any 1 ≤ i ≤ m+ 1, we have

Gf [m+1] =

m+1∑
j=1

Gf ◦ pj = Gf ◦ pi +Gf [m] ◦ πi.

Using that [Y [m+1]] = p∗1[Y] ∧ π∗1[Y [m]], we find

I :=

∫
Ck(m+1)×S

Gf [m+1](ddcGf [m+1])km+k−1 ∧ [Y [m+1]]

≥
∫
Ck(m+1)×S

Gf ◦ p1(p∗1dd
cGf + π∗1dd

cGf [m])km+k−1 ∧ [Y [m+1]]

≥
∫
Ck(m+1)×S

Gf ◦ p1(p∗1dd
cGf )k−1 ∧ (π∗1dd

cGf [m])km ∧ [Y [m+1]]

=

∫
Ck(m+1)×S

p∗1

(
Gf (ddcGf )k−1 ∧ [Y]

)
∧ π∗1

(
(ddcGf [m])km ∧ [Y [m]]

)
=

∫
Ckm×S

(∫
Ck
Gft(dd

cGft)
k−1 ∧ [Yt]

)
(ddcGf [m])km ∧ [Y [m]]

=

∫
Ckm×S

Gf,Y ◦ π[m] · (ddcGf [m])km ∧ [Y [m]].

Claim. For m ≥ dimS, there is C(m) ≥ 1 such that

(π[m])∗

(
(ddcGf [m])km ∧ [Y [m]]

)
= C(m)µpol

f,Y .

According to the Claim above, we find

I ≥
∫
S
Gf,Y · µpol

f,Y .

We now proceed by contradiction. If the last integral vanishes, for any ε > 0, the set of
points t ∈ Ω such that Gf,Y(t) ≤ ε is dense in Ω. As Gf,Y ≥ 0, this implies the continuous
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function Gf,Y : S0(C) → R is constant equal to zero on Ω. This is a contradiction since
(ddcGf,Y)m would be zero on Ω. �

All there is left to do is to prove the Claim.

Proof of the Claim. We first prove that ddcGf,Y = π∗
(
(ddcGf )k ∧ [Y]

)
using a slicing

argument. Indeed, if φ is a smooth compactly supported (dimS − 1, dimS − 1)-form on
S0(C), we have∫

X 0(C)
π∗φ ∧ (ddcGf )k ∧ [Y] =

∫
X 0(C)

Gf (ddcGf )k−1 ∧ [Y] ∧ π∗(ddcφ)

=

∫
S0(C)

(∫
π−1{t}

Gft(dd
cGft)

k−1 ∧ (ιt)
∗[Y]

)
· ddcφ,

where ιt : Xt → X is the natural injection, so that ι∗t [Y] = [Yt], whence∫
X 0(C)

π∗φ · (ddcGf )k ∧ [Y] =

∫
S0(C)

Gf,Y · ddcφ =

∫
S0(C)

ddcGf,Y ∧ φ.

To conclude, we proceed as in the proof of Proposition 1.4. �

Now, when X is a projective variety and L is a line bundle on X, we denote by L�N

the induces line bundle on XN , i.e. L�N = τ∗1L + · · · + τ∗NL, where τi : XN → X is the
canonical projection onto the i-th coordinate. We will also use the next Lemma due to
Gao, Ge and Kühne [GGK, Lemma 4.3].

Lemma 7.5. Let X be an irreducible projective variety with a very ample line bundle L,
defined over an algebraically closed field K and N ≥ 2. Let Z ( XN be a proper closed
subvariety. There exists a constant

B = B(N, dimX,degL(X), degL�N (Z)) > 0,

such that for any subset Σ ⊂ X(K) with ΣN ⊆ Z(K), there exists a proper closed subva-
riety X ′ of X with Σ ⊂ X ′(K) and degL(X ′) < B.

We are now in position to prove Theorem 7.2.

Proof of Theorem 7.2. For any v ∈MK, recall that the Green function of f [m+1] is

Gf [m+1],v(x) := lim
n→∞

m+1∑
j=1

1

dn
log+ ‖fn ◦ pi(x)‖v, x ∈ Ak(m+1)(Q̄)× S0(Q̄).

One can easily show that for any x ∈ Ak(m+1)(Q̄)× S0(Q̄), we have

ĥf [m+1](x) =
1

[L : K]

∑
v∈MK

∑
σ∈Gal(L/K)

nvGf [m+1],v(σ(x)),

where L is any finite extension of K so that x ∈ Ak(m+1)(L)× S0(L). In particular, for a
given place v ∈MK, we deduce that

nv
[L : K]

∑
σ∈Gal(L/K)

Gf [m+1],v(σ(x)) ≤ ĥf [m+1](x).(16)

We proceed by contradiction, assuming that there is a Zariski dense subset of small points,
i.e. for all ε > 0, the set

Eε := {x ∈ Y [m+1](Q̄) : ĥf [m+1](x) ≤ ε}
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is Zariski dense in Y [m+1](Q̄). In particular, there exists a generic sequence (xn) ∈
(Y [m+1])0(Q̄) such that ĥf [m+1](xn)→ 0 as n→∞. Let now v0 ∈MK be an archimedean
place. Since we will now work only at the place v0, we forget the subscript v0 in the rest
of the proof.

By construction of the Green current T̂f [m+1] and of the Green function G := Gf [m+1] ,

as measures on Ck(m+1) × S0(C), we have

T̂
k(m+1)−1

f [m+1] ∧ [Y [m+1]] = (ddcGf [m+1])k(m+1)−1 ∧ [Y [m+1]].

In particular, Lemma 7.4 says that∫
(Y [m+1])0?(C)

G · µm+1 > 0,

where µm+1 = T̂ dimY [m+1]

f [m+1] and (Y [m+1])0
? = (Y [m+1])0 ∩ (Ak(m+1) × S).

As G is continuous and non-negative on (Y [m+1])0
?(C), we deduce that there exists a

non-empty open analytic set Ω b (Y [m+1])0
?(C) such that G > 0 on Ω and such that

µm(Ω) > 0. Let χ : (Y [m+1])0
?(C) → R+ be a smooth compactly supported function with

χ = 1 on Ω and 0 ≤ χ ≤ 1. The function φ := G · χ is thus continuous, compactly
supported, and G ≥ φ. We now apply the Equidistribution Theorem 6.1:

lim
n→∞

1

Card(O(xn))

∑
y∈O(xn)

φ(y) =

∫
(Y [m+1])0?(C)

φµm+1.

In particular, there is n0 ≥ 1 such that for any n ≥ n0, we have

1

Card(O(xn))

∑
y∈O(xn)

φ(y) ≥ 1

2

∫
(Y [m+1])0?(C)

φµm+1 ≥
1

2

∫
Ω
Gµm+1 > 0.

Moreover, for any finite extension Ln of K with xn ∈ Y [m+1](Ln),

1

[Ln : K]

∑
σ∈Gal(Ln/K)

Gf [m+1](σ(xn)) =
1

Card(O(xn))

∑
y∈O(xn)

G(y)

≥ 1

Card(O(xn))

∑
y∈O(xn)

φ(y),

where we used that G ≥ φ. Together with (16), this gives

ĥf [m+1](xn) ≥ nv0
2

∫
Ω
Gµm+1 > 0,

for any n ≥ n0. This is a contradiction since ĥf [m+1](xn)→ 0 as n→∞ by hypothesis.

We have thus proved there exists ε0 > 0 such that the set Eε0 is not Zariski dense in

Y [m+1](Q̄). In particular, there is a proper Zariski closed subset V ( Y [m+1] which is
defined over Q̄ and that contains Eε0 . If Z := π[m+1](V ) ( S is a proper closed subvariety

of S, then for any t ∈ (S0 \ Z)(Q̄), we have ĥf [m+1] ≥ ε0 on Y m+1
t (Q̄). It is in particular

true on ∆ := {(z, . . . , z) : z ∈ Yt(Q̄)}. Let ε := ε0/(m+ 1). This gives

m+1∑
j=1

ĥft(z) = ĥf [m+1](z, . . . , z, t) ≥ ε0,

which rewrites as ĥft ≥ ε = ε0/(m+ 1) on Yt(Q̄).
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Assume now that π(V ) = S and let Z ( S be the proper closed subvariety of S such that
π[m+1] is flat on each irreducible component of V over S0 \ Z. Pick now t ∈ (S0 \ Z)(Q̄).
By definition, the line bundle Lt := OPk(1)|Yt is very ample and the set Vt := V ∩ Yt is a
proper closed subvariety of Yt with D := degLt(Vt) independent of t. Let

Σt :=
{
z ∈ Yt(Q̄) : ĥft(z) ≤ ε

}
.

where ε = ε0/(m+ 1) as above. The conclusion follows from Lemma 7.5. �

7.3. Uniformity in the moduli space P2
d . We now focus on the universal family

f : P2
P2
d
−→ P2

P2
d

of the moduli space P2
d and as above, this is a family (P2

S , f,OP2(1)) of degree d endomor-
phisms of P2 parametrized by a projective model S of P2

d with regular part P2
d which is

defined over Q (see § 2.1).

We also study here the variation of the canonical height of the critical locus. However,
when f : A2 → A2 is a degree d regular polynomial endomorphism, L∞ is an irreducible
component of the critical locus of f and f induces an endomorphism of L∞, we denote by
fL∞ . This induces a map

r : P2
d −→M 1

d

defined by r(t) = [ft,L∞ ]. This map is well defined and surjective and, for every [g] ∈
M 1

d , the set r−1([g]) consists of conjugacy classes of regular polynomial automorphisms
whose restriction to L∞ are conjugated to g. It thus is a subvariety of P2

d of dimension
P2
d −N 1

d > 0.

In the present situation, one easily sees that Crit(ft) decomposes as

Crit(ft) = L∞ ∪ Cft
where Cft ∩ A2 = {z ∈ A2 : det(Dzft) = 0} = Crit(ft) ∩ A2. We now let

C := {(z, t) ∈ P2 ×P2
d : z ∈ Cft}.

The next key lemma is a consequence of Theorem C (see Theorem 4.1).

Lemma 7.6. There exists a non-empty open set Ω ⊂P2
d(C) that is contained in supp(µpoly

f,C ).

Proof. Write P := P2
d for simplicity. First, as currents on C2P ×P2

d(C), we have

T̂f [P ] = ddcGf [P ] .

In particular, as measures on C2P ×P2
d(C), we also have

T̂ 2P
f [P ] ∧ [Crit[P ]] = T̂ 2P

f [P ] ∧ [C[P ]] =
(
ddcGf [P ]

)2P
∧ [C[P ]].

By construction, the points of the support of T̂ 2P
f [P ] ∧ [Crit[P ]] constructed in Theorem 4.1

belong to C2P ×P2
d(C). In particular, they belong to the support of

(
ddcGf [P ]

)2P
∧ [C[P ]].

We conclude by pushing forward this measure by π[P ]. �

We are now in position to prove the following result.

Theorem 7.7. Fix d ≥ 2. There are constants B(d) ≥ 1 and ε(d) > 0 and a non-empty
Zariski open subset U ⊂ Poly2

d such for any f ∈ U(Q̄), then

#{z ∈ Cf (Q̄) : ĥf (z) ≤ ε(d)} ≤ B(d).
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Proof. As before, we let

f : P2
P2
d
→ P2

P2
d

be the universal family. Lemma 7.6 with Theorem 7.2 imply that there are ε > 0, B ≥ 1
and a non-empty Zariski open set U ⊂P2

d such that for any t ∈ U (Q̄)

#{z ∈ Cft(Q̄) : ĥft(z) ≤ ε} ≤ B.

Up to reducing U , we can assume U ∩Π(V ) = ∅, where V is such that Π : Poly2
d \ V →

P2
d \ Π(V ) is a principal bundle. The set U := Π−1(U ) is Zariski open and, for any

f ∈ U(Q̄), if t = Π(f), there is φ ∈ AutQ̄(A2) such that φ ◦ f = ft ◦ φ on P2. Let L̄f
(resp. L̄ft) be the line bundle OP2(1) endowed with the semi-positive continuous adelic
f -invariant (resp. ft-invariant) metric. Fix a number field L such that f , ft and φ are all
defined over L and let v ∈ ML. If ‖ · ‖f,v and ‖ · ‖ft,v are the metrics invariant by f and
ft respectively at the place v, the equation φ ◦ f = ft ◦ φ easily gives

φ∗‖ · ‖f,v = ‖ · ‖ft,v on Lv.

In particular, for any closed subvariety Y ⊂ P2 which is defined over Q̄, we deduce

ĥf (φ−1(Y )) = ĥft(Y ).

As φ ◦ f = ft ◦ φ, we find Cf = φ−1(Cft) so that ĥf (Cf ) = ĥft(Cft) and

{z ∈ Cf (Q̄) : ĥf (z) ≤ ε} = φ−1
(
{z ∈ Cft(Q̄) : ĥft(z) ≤ ε}

)
.

As φ is an automorphism of P2, the conclusion follows. �

To conclude, it remains to prove Theorem D.

Proof of Theorem D . Observe that the statement is a direct consequence of Theorem D
in Q̄: there exists a constant B(d) ≥ 1 and a non-empty Zariski open subset U ⊂ Poly2

d

such for any f ∈ U(Q̄), we have

#Preper(f) ∩ Cf ≤ B(d).

Now, let f ∈ U(C) with #Preper(f) ∩ Cf ≥ B(d) + 1. The equations defining these
B(d) + 1 points are defined over Q̄ (we only consider the periods and preperiods attached
to those precised points) so we reach a contradiction. �

7.4. The case of polynomial skew-products. A regular polynomial endomorphism
f : A2 → A2 of degree d defined over a field K is a skew-product if we have

f(z, w) = (p(z), q(z, w)),

where p ∈ K[z] has degree d and q(z, w) ∈ K[z, w] satisfies degw(q) = d. Following Astorg
and Bianchi [AB], we denote by Sk(p, d) the space of all degree d polynomial skew-products
with given base p, up to affine conjugacy. It is not difficult to see that, when p is defined
over a number field K, then Sk(p, d) is also defined over K.

As in the previous case, this space is a fine moduli space whence there is a universal
family f : P2

Sk(p,d) −→ P2
Sk(p,d) (note that it can be made explicit in this case, see [AB]).

Astorg and Bianchi show the following.

Theorem 7.8 ([AB]). Let p ∈ C[z] be a polynomial whose Julia set is not totally discon-
nected and which is not conjugated to zd or to the degree d Chebyshev polynomial. Then
the support of µf,Crit has non-empty interior in Sk(p, d)(C).
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Note that all postcritically finite polynomials have connected Julia set and are defined
over Q̄. Note also that a polynomial skew-product f = (p, q) can be PCF only if its base
p is itself PCF. As a direct application of Theorem 7.2 and of Theorem 7.8, as above we
have the following.

Theorem 7.9. Let p ∈ C[z] be a PCF polynomial which is not conjugated to zd or to
the degree d Chebyshev polynomial. Then there exists a non-empty Zariski open subset
U ⊂ Sk(p, d), and constants ε(p, d) > 0 and B(p, d) ≥ 1 such that for any f ∈ U(Q̄), then

#{z ∈ Cf (Q̄) : ĥf (z) ≤ ε(p, d)} ≤ B(p, d).

In particular, for any f ∈ U(C), we have

#Preper(f) ∩ Cf (C) ≤ B(p, d).
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Math., 4:813–843, 2017.

[DF] Romain Dujardin and Charles Favre. Distribution of rational maps with a preperiodic critical
point. Amer. J. Math., 130(4):979–1032, 2008.

[DGH] Vesselin Dimitrov, Ziyang Gao, and Philipp Habegger. Uniformity in Mordell-Lang for curves.
Ann. of Math. (2), 194(1):237–298, 2021.

[DKY1] Laura DeMarco, Holly Krieger, and Hexi Ye. Uniform Manin-Mumford for a family of genus
2 curves. Ann. of Math. (2), 191(3):949–1001, 2020.

[DKY2] Laura DeMarco, Holly Krieger, and Hexi Ye. Common preperiodic points for quadratic poly-
nomials. J. Mod. Dyn., 18:363–413, 2022.

[DM] Laura DeMarco and Niki Myrto Mavraki. Dynamics on P1: preperiodic points and pairwise
stability, 2022.

[DS1] John Dalbec and Bernd Sturmfels. Introduction to Chow forms. In Invariant methods in
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